| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-1cn |  |-  1 e. CC | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 4 | 3 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 5 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 6 | 2 4 5 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 7 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 8 | 1 6 7 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 9 | 3 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 10 | 8 9 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 11 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 12 | 1 6 11 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 13 | 3 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 14 | 12 13 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 15 | 10 14 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 16 | 15 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 17 | 4 | recld |  |-  ( A e. dom arctan -> ( Re ` A ) e. RR ) | 
						
							| 18 |  | 0re |  |-  0 e. RR | 
						
							| 19 |  | lttri2 |  |-  ( ( ( Re ` A ) e. RR /\ 0 e. RR ) -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) | 
						
							| 20 | 17 18 19 | sylancl |  |-  ( A e. dom arctan -> ( ( Re ` A ) =/= 0 <-> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) ) | 
						
							| 21 | 20 | biimpa |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) | 
						
							| 22 | 15 | imnegd |  |-  ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 23 | 10 14 | negsubdi2d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 24 |  | mulneg2 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 25 | 2 4 24 | sylancr |  |-  ( A e. dom arctan -> ( _i x. -u A ) = -u ( _i x. A ) ) | 
						
							| 26 | 25 | oveq2d |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 + -u ( _i x. A ) ) ) | 
						
							| 27 |  | negsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 28 | 1 6 27 | sylancr |  |-  ( A e. dom arctan -> ( 1 + -u ( _i x. A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 29 | 26 28 | eqtrd |  |-  ( A e. dom arctan -> ( 1 + ( _i x. -u A ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 30 | 29 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. -u A ) ) ) = ( log ` ( 1 - ( _i x. A ) ) ) ) | 
						
							| 31 | 25 | oveq2d |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 - -u ( _i x. A ) ) ) | 
						
							| 32 |  | subneg |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 33 | 1 6 32 | sylancr |  |-  ( A e. dom arctan -> ( 1 - -u ( _i x. A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 34 | 31 33 | eqtrd |  |-  ( A e. dom arctan -> ( 1 - ( _i x. -u A ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 35 | 34 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. -u A ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 36 | 30 35 | oveq12d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) = ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 37 | 23 36 | eqtr4d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) | 
						
							| 38 | 37 | fveq2d |  |-  ( A e. dom arctan -> ( Im ` -u ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) | 
						
							| 39 | 22 38 | eqtr3d |  |-  ( A e. dom arctan -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) ) | 
						
							| 41 |  | atandmneg |  |-  ( A e. dom arctan -> -u A e. dom arctan ) | 
						
							| 42 | 17 | lt0neg1d |  |-  ( A e. dom arctan -> ( ( Re ` A ) < 0 <-> 0 < -u ( Re ` A ) ) ) | 
						
							| 43 | 42 | biimpa |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < -u ( Re ` A ) ) | 
						
							| 44 | 4 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> A e. CC ) | 
						
							| 45 | 44 | renegd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Re ` -u A ) = -u ( Re ` A ) ) | 
						
							| 46 | 43 45 | breqtrrd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> 0 < ( Re ` -u A ) ) | 
						
							| 47 |  | atanlogsublem |  |-  ( ( -u A e. dom arctan /\ 0 < ( Re ` -u A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 48 | 41 46 47 | syl2an2r |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 49 |  | picn |  |-  _pi e. CC | 
						
							| 50 | 49 | negnegi |  |-  -u -u _pi = _pi | 
						
							| 51 | 50 | oveq2i |  |-  ( -u _pi (,) -u -u _pi ) = ( -u _pi (,) _pi ) | 
						
							| 52 | 48 51 | eleqtrrdi |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. -u A ) ) ) - ( log ` ( 1 - ( _i x. -u A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) | 
						
							| 53 | 40 52 | eqeltrd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) | 
						
							| 54 |  | pire |  |-  _pi e. RR | 
						
							| 55 | 54 | renegcli |  |-  -u _pi e. RR | 
						
							| 56 | 15 | adantr |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC ) | 
						
							| 57 | 56 | imcld |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) | 
						
							| 58 |  | iooneg |  |-  ( ( -u _pi e. RR /\ _pi e. RR /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) | 
						
							| 59 | 55 54 57 58 | mp3an12i |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) <-> -u ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) -u -u _pi ) ) ) | 
						
							| 60 | 53 59 | mpbird |  |-  ( ( A e. dom arctan /\ ( Re ` A ) < 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 61 |  | atanlogsublem |  |-  ( ( A e. dom arctan /\ 0 < ( Re ` A ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 62 | 60 61 | jaodan |  |-  ( ( A e. dom arctan /\ ( ( Re ` A ) < 0 \/ 0 < ( Re ` A ) ) ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 63 | 21 62 | syldan |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) ) | 
						
							| 64 |  | eliooord |  |-  ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. ( -u _pi (,) _pi ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) | 
						
							| 65 | 63 64 | syl |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) ) | 
						
							| 66 | 65 | simpld |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 67 | 65 | simprd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi ) | 
						
							| 68 | 16 | imcld |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR ) | 
						
							| 69 |  | ltle |  |-  ( ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) e. RR /\ _pi e. RR ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) | 
						
							| 70 | 68 54 69 | sylancl |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) < _pi -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) | 
						
							| 71 | 67 70 | mpd |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) | 
						
							| 72 |  | ellogrn |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log <-> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. CC /\ -u _pi < ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) /\ ( Im ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) <_ _pi ) ) | 
						
							| 73 | 16 66 71 72 | syl3anbrc |  |-  ( ( A e. dom arctan /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) |