| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ax-icn |  |-  _i e. CC | 
						
							| 2 |  | atancl |  |-  ( A e. dom arctan -> ( arctan ` A ) e. CC ) | 
						
							| 3 |  | mulcl |  |-  ( ( _i e. CC /\ ( arctan ` A ) e. CC ) -> ( _i x. ( arctan ` A ) ) e. CC ) | 
						
							| 4 | 1 2 3 | sylancr |  |-  ( A e. dom arctan -> ( _i x. ( arctan ` A ) ) e. CC ) | 
						
							| 5 |  | efcl |  |-  ( ( _i x. ( arctan ` A ) ) e. CC -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) | 
						
							| 6 | 4 5 | syl |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) e. CC ) | 
						
							| 7 |  | ax-1cn |  |-  1 e. CC | 
						
							| 8 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 9 | 8 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 10 | 9 | sqcld |  |-  ( A e. dom arctan -> ( A ^ 2 ) e. CC ) | 
						
							| 11 |  | addcl |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 12 | 7 10 11 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) e. CC ) | 
						
							| 13 | 12 | sqrtcld |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC ) | 
						
							| 14 | 12 | sqsqrtd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 15 |  | atandm4 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 + ( A ^ 2 ) ) =/= 0 ) ) | 
						
							| 16 | 15 | simprbi |  |-  ( A e. dom arctan -> ( 1 + ( A ^ 2 ) ) =/= 0 ) | 
						
							| 17 | 14 16 | eqnetrd |  |-  ( A e. dom arctan -> ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 ) | 
						
							| 18 |  | sqne0 |  |-  ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) e. CC -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 19 | 13 18 | syl |  |-  ( A e. dom arctan -> ( ( ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ^ 2 ) =/= 0 <-> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) ) | 
						
							| 20 | 17 19 | mpbid |  |-  ( A e. dom arctan -> ( sqrt ` ( 1 + ( A ^ 2 ) ) ) =/= 0 ) | 
						
							| 21 | 6 13 20 | divcan4d |  |-  ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( exp ` ( _i x. ( arctan ` A ) ) ) ) | 
						
							| 22 |  | halfcn |  |-  ( 1 / 2 ) e. CC | 
						
							| 23 | 12 16 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) | 
						
							| 24 |  | mulcl |  |-  ( ( ( 1 / 2 ) e. CC /\ ( log ` ( 1 + ( A ^ 2 ) ) ) e. CC ) -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) | 
						
							| 25 | 22 23 24 | sylancr |  |-  ( A e. dom arctan -> ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) | 
						
							| 26 |  | efadd |  |-  ( ( ( _i x. ( arctan ` A ) ) e. CC /\ ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) e. CC ) -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 27 | 4 25 26 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) ) | 
						
							| 28 |  | 2cn |  |-  2 e. CC | 
						
							| 29 | 28 | a1i |  |-  ( A e. dom arctan -> 2 e. CC ) | 
						
							| 30 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 31 | 1 9 30 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 32 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 33 | 7 31 32 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 34 | 8 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 35 | 33 34 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 36 | 29 35 4 | subdid |  |-  ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) ) | 
						
							| 37 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 38 | 37 | oveq2d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 39 | 1 | a1i |  |-  ( A e. dom arctan -> _i e. CC ) | 
						
							| 40 | 29 39 2 | mulassd |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) | 
						
							| 41 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 42 | 1 41 | ax-mp |  |-  ( _i / 2 ) e. CC | 
						
							| 43 | 28 1 42 | mulassi |  |-  ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) | 
						
							| 44 | 28 1 42 | mul12i |  |-  ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) | 
						
							| 45 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 46 | 1 28 45 | divcan2i |  |-  ( 2 x. ( _i / 2 ) ) = _i | 
						
							| 47 | 46 | oveq2i |  |-  ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) | 
						
							| 48 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 49 | 47 48 | eqtri |  |-  ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 | 
						
							| 50 | 43 44 49 | 3eqtri |  |-  ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 | 
						
							| 51 | 50 | oveq1i |  |-  ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 52 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 53 | 7 31 52 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 54 | 8 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 55 | 53 54 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 56 | 55 35 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 57 | 56 | mulm1d |  |-  ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 58 | 51 57 | eqtrid |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 59 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 60 | 59 | a1i |  |-  ( A e. dom arctan -> ( 2 x. _i ) e. CC ) | 
						
							| 61 | 42 | a1i |  |-  ( A e. dom arctan -> ( _i / 2 ) e. CC ) | 
						
							| 62 | 60 61 56 | mulassd |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 63 | 55 35 | negsubdi2d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 64 | 58 62 63 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 65 | 38 40 64 | 3eqtr3d |  |-  ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 66 | 65 | oveq2d |  |-  ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 67 |  | mulcl |  |-  ( ( 2 e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 68 | 28 35 67 | sylancr |  |-  ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 69 | 68 35 55 | subsubd |  |-  ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 70 | 35 | 2timesd |  |-  ( A e. dom arctan -> ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 71 | 35 35 70 | mvrladdd |  |-  ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 72 | 71 | oveq1d |  |-  ( A e. dom arctan -> ( ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 73 |  | atanlogadd |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log ) | 
						
							| 74 |  | logef |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) e. ran log -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 75 | 73 74 | syl |  |-  ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 76 |  | efadd |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 77 | 35 55 76 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 78 |  | eflog |  |-  ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 79 | 33 34 78 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 80 |  | eflog |  |-  ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 81 | 53 54 80 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 82 | 79 81 | oveq12d |  |-  ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) x. ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) | 
						
							| 83 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 84 | 83 | a1i |  |-  ( A e. dom arctan -> ( 1 ^ 2 ) = 1 ) | 
						
							| 85 |  | sqmul |  |-  ( ( _i e. CC /\ A e. CC ) -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 86 | 1 9 85 | sylancr |  |-  ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = ( ( _i ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 87 |  | i2 |  |-  ( _i ^ 2 ) = -u 1 | 
						
							| 88 | 87 | oveq1i |  |-  ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = ( -u 1 x. ( A ^ 2 ) ) | 
						
							| 89 | 10 | mulm1d |  |-  ( A e. dom arctan -> ( -u 1 x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 90 | 88 89 | eqtrid |  |-  ( A e. dom arctan -> ( ( _i ^ 2 ) x. ( A ^ 2 ) ) = -u ( A ^ 2 ) ) | 
						
							| 91 | 86 90 | eqtrd |  |-  ( A e. dom arctan -> ( ( _i x. A ) ^ 2 ) = -u ( A ^ 2 ) ) | 
						
							| 92 | 84 91 | oveq12d |  |-  ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( 1 - -u ( A ^ 2 ) ) ) | 
						
							| 93 |  | subsq |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) | 
						
							| 94 | 7 31 93 | sylancr |  |-  ( A e. dom arctan -> ( ( 1 ^ 2 ) - ( ( _i x. A ) ^ 2 ) ) = ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) ) | 
						
							| 95 |  | subneg |  |-  ( ( 1 e. CC /\ ( A ^ 2 ) e. CC ) -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 96 | 7 10 95 | sylancr |  |-  ( A e. dom arctan -> ( 1 - -u ( A ^ 2 ) ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 97 | 92 94 96 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) x. ( 1 - ( _i x. A ) ) ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 98 | 77 82 97 | 3eqtrd |  |-  ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( 1 + ( A ^ 2 ) ) ) | 
						
							| 99 | 98 | fveq2d |  |-  ( A e. dom arctan -> ( log ` ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 100 | 75 99 | eqtr3d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) + ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 101 | 69 72 100 | 3eqtrd |  |-  ( A e. dom arctan -> ( ( 2 x. ( log ` ( 1 + ( _i x. A ) ) ) ) - ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 102 | 36 66 101 | 3eqtrd |  |-  ( A e. dom arctan -> ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) = ( log ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 103 | 102 | oveq1d |  |-  ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) ) | 
						
							| 104 | 35 4 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) e. CC ) | 
						
							| 105 | 45 | a1i |  |-  ( A e. dom arctan -> 2 =/= 0 ) | 
						
							| 106 | 104 29 105 | divcan3d |  |-  ( A e. dom arctan -> ( ( 2 x. ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) / 2 ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) ) | 
						
							| 107 | 23 29 105 | divrec2d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( A ^ 2 ) ) ) / 2 ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 108 | 103 106 107 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 109 | 35 4 25 | subaddd |  |-  ( A e. dom arctan -> ( ( ( log ` ( 1 + ( _i x. A ) ) ) - ( _i x. ( arctan ` A ) ) ) = ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) <-> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 110 | 108 109 | mpbid |  |-  ( A e. dom arctan -> ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( log ` ( 1 + ( _i x. A ) ) ) ) | 
						
							| 111 | 110 | fveq2d |  |-  ( A e. dom arctan -> ( exp ` ( ( _i x. ( arctan ` A ) ) + ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 112 | 27 111 | eqtr3d |  |-  ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 113 | 22 | a1i |  |-  ( A e. dom arctan -> ( 1 / 2 ) e. CC ) | 
						
							| 114 | 12 16 113 | cxpefd |  |-  ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) | 
						
							| 115 |  | cxpsqrt |  |-  ( ( 1 + ( A ^ 2 ) ) e. CC -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 116 | 12 115 | syl |  |-  ( A e. dom arctan -> ( ( 1 + ( A ^ 2 ) ) ^c ( 1 / 2 ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 117 | 114 116 | eqtr3d |  |-  ( A e. dom arctan -> ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) = ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) | 
						
							| 118 | 117 | oveq2d |  |-  ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( exp ` ( ( 1 / 2 ) x. ( log ` ( 1 + ( A ^ 2 ) ) ) ) ) ) = ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 119 | 112 118 79 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 120 | 119 | oveq1d |  |-  ( A e. dom arctan -> ( ( ( exp ` ( _i x. ( arctan ` A ) ) ) x. ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) | 
						
							| 121 | 21 120 | eqtr3d |  |-  ( A e. dom arctan -> ( exp ` ( _i x. ( arctan ` A ) ) ) = ( ( 1 + ( _i x. A ) ) / ( sqrt ` ( 1 + ( A ^ 2 ) ) ) ) ) |