| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 2 | 1 | oveq2d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 3 |  | 2cn |  |-  2 e. CC | 
						
							| 4 | 3 | a1i |  |-  ( A e. dom arctan -> 2 e. CC ) | 
						
							| 5 |  | ax-icn |  |-  _i e. CC | 
						
							| 6 | 5 | a1i |  |-  ( A e. dom arctan -> _i e. CC ) | 
						
							| 7 |  | atancl |  |-  ( A e. dom arctan -> ( arctan ` A ) e. CC ) | 
						
							| 8 | 4 6 7 | mulassd |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( arctan ` A ) ) = ( 2 x. ( _i x. ( arctan ` A ) ) ) ) | 
						
							| 9 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 10 | 5 9 | ax-mp |  |-  ( _i / 2 ) e. CC | 
						
							| 11 | 3 5 10 | mulassi |  |-  ( ( 2 x. _i ) x. ( _i / 2 ) ) = ( 2 x. ( _i x. ( _i / 2 ) ) ) | 
						
							| 12 | 3 5 10 | mul12i |  |-  ( 2 x. ( _i x. ( _i / 2 ) ) ) = ( _i x. ( 2 x. ( _i / 2 ) ) ) | 
						
							| 13 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 14 | 5 3 13 | divcan2i |  |-  ( 2 x. ( _i / 2 ) ) = _i | 
						
							| 15 | 14 | oveq2i |  |-  ( _i x. ( 2 x. ( _i / 2 ) ) ) = ( _i x. _i ) | 
						
							| 16 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 17 | 15 16 | eqtri |  |-  ( _i x. ( 2 x. ( _i / 2 ) ) ) = -u 1 | 
						
							| 18 | 11 12 17 | 3eqtri |  |-  ( ( 2 x. _i ) x. ( _i / 2 ) ) = -u 1 | 
						
							| 19 | 18 | oveq1i |  |-  ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 20 |  | ax-1cn |  |-  1 e. CC | 
						
							| 21 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 22 | 21 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 23 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 24 | 5 22 23 | sylancr |  |-  ( A e. dom arctan -> ( _i x. A ) e. CC ) | 
						
							| 25 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 26 | 20 24 25 | sylancr |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 27 | 21 | simp2bi |  |-  ( A e. dom arctan -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 28 | 26 27 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 29 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 30 | 20 24 29 | sylancr |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 31 | 21 | simp3bi |  |-  ( A e. dom arctan -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 32 | 30 31 | logcld |  |-  ( A e. dom arctan -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 33 | 28 32 | subcld |  |-  ( A e. dom arctan -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 34 | 33 | mulm1d |  |-  ( A e. dom arctan -> ( -u 1 x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 35 | 19 34 | eqtrid |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 36 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 37 | 36 | a1i |  |-  ( A e. dom arctan -> ( 2 x. _i ) e. CC ) | 
						
							| 38 | 10 | a1i |  |-  ( A e. dom arctan -> ( _i / 2 ) e. CC ) | 
						
							| 39 | 37 38 33 | mulassd |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) x. ( _i / 2 ) ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 40 | 28 32 | negsubdi2d |  |-  ( A e. dom arctan -> -u ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 41 | 35 39 40 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) x. ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 42 | 2 8 41 | 3eqtr3d |  |-  ( A e. dom arctan -> ( 2 x. ( _i x. ( arctan ` A ) ) ) = ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 44 |  | efsub |  |-  ( ( ( log ` ( 1 + ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 45 | 32 28 44 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( ( log ` ( 1 + ( _i x. A ) ) ) - ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) ) | 
						
							| 46 |  | eflog |  |-  ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( 1 + ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 47 | 30 31 46 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( 1 + ( _i x. A ) ) ) | 
						
							| 48 |  | eflog |  |-  ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 ) -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 49 | 26 27 48 | syl2anc |  |-  ( A e. dom arctan -> ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( 1 - ( _i x. A ) ) ) | 
						
							| 50 | 47 49 | oveq12d |  |-  ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) | 
						
							| 51 |  | negsub |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) | 
						
							| 52 | 5 22 51 | sylancr |  |-  ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) | 
						
							| 53 | 6 | mulridd |  |-  ( A e. dom arctan -> ( _i x. 1 ) = _i ) | 
						
							| 54 | 16 | oveq1i |  |-  ( ( _i x. _i ) x. A ) = ( -u 1 x. A ) | 
						
							| 55 | 6 6 22 | mulassd |  |-  ( A e. dom arctan -> ( ( _i x. _i ) x. A ) = ( _i x. ( _i x. A ) ) ) | 
						
							| 56 | 22 | mulm1d |  |-  ( A e. dom arctan -> ( -u 1 x. A ) = -u A ) | 
						
							| 57 | 54 55 56 | 3eqtr3a |  |-  ( A e. dom arctan -> ( _i x. ( _i x. A ) ) = -u A ) | 
						
							| 58 | 53 57 | oveq12d |  |-  ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( _i + -u A ) ) | 
						
							| 59 | 6 22 6 | pnpcan2d |  |-  ( A e. dom arctan -> ( ( _i + _i ) - ( A + _i ) ) = ( _i - A ) ) | 
						
							| 60 | 52 58 59 | 3eqtr4d |  |-  ( A e. dom arctan -> ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) = ( ( _i + _i ) - ( A + _i ) ) ) | 
						
							| 61 | 20 | a1i |  |-  ( A e. dom arctan -> 1 e. CC ) | 
						
							| 62 | 6 61 24 | adddid |  |-  ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( _i x. 1 ) + ( _i x. ( _i x. A ) ) ) ) | 
						
							| 63 | 6 | 2timesd |  |-  ( A e. dom arctan -> ( 2 x. _i ) = ( _i + _i ) ) | 
						
							| 64 | 63 | oveq1d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) - ( A + _i ) ) = ( ( _i + _i ) - ( A + _i ) ) ) | 
						
							| 65 | 60 62 64 | 3eqtr4d |  |-  ( A e. dom arctan -> ( _i x. ( 1 + ( _i x. A ) ) ) = ( ( 2 x. _i ) - ( A + _i ) ) ) | 
						
							| 66 | 6 61 24 | subdid |  |-  ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) ) | 
						
							| 67 | 53 57 | oveq12d |  |-  ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i - -u A ) ) | 
						
							| 68 |  | subneg |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i - -u A ) = ( _i + A ) ) | 
						
							| 69 | 5 22 68 | sylancr |  |-  ( A e. dom arctan -> ( _i - -u A ) = ( _i + A ) ) | 
						
							| 70 | 67 69 | eqtrd |  |-  ( A e. dom arctan -> ( ( _i x. 1 ) - ( _i x. ( _i x. A ) ) ) = ( _i + A ) ) | 
						
							| 71 |  | addcom |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i + A ) = ( A + _i ) ) | 
						
							| 72 | 5 22 71 | sylancr |  |-  ( A e. dom arctan -> ( _i + A ) = ( A + _i ) ) | 
						
							| 73 | 66 70 72 | 3eqtrd |  |-  ( A e. dom arctan -> ( _i x. ( 1 - ( _i x. A ) ) ) = ( A + _i ) ) | 
						
							| 74 | 65 73 | oveq12d |  |-  ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) ) | 
						
							| 75 |  | ine0 |  |-  _i =/= 0 | 
						
							| 76 | 75 | a1i |  |-  ( A e. dom arctan -> _i =/= 0 ) | 
						
							| 77 | 30 26 6 27 76 | divcan5d |  |-  ( A e. dom arctan -> ( ( _i x. ( 1 + ( _i x. A ) ) ) / ( _i x. ( 1 - ( _i x. A ) ) ) ) = ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) ) | 
						
							| 78 |  | addcl |  |-  ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) | 
						
							| 79 | 22 5 78 | sylancl |  |-  ( A e. dom arctan -> ( A + _i ) e. CC ) | 
						
							| 80 |  | subneg |  |-  ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) | 
						
							| 81 | 22 5 80 | sylancl |  |-  ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) | 
						
							| 82 |  | atandm |  |-  ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) | 
						
							| 83 | 82 | simp2bi |  |-  ( A e. dom arctan -> A =/= -u _i ) | 
						
							| 84 |  | negicn |  |-  -u _i e. CC | 
						
							| 85 |  | subeq0 |  |-  ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) | 
						
							| 86 | 85 | necon3bid |  |-  ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) | 
						
							| 87 | 22 84 86 | sylancl |  |-  ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) | 
						
							| 88 | 83 87 | mpbird |  |-  ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) | 
						
							| 89 | 81 88 | eqnetrrd |  |-  ( A e. dom arctan -> ( A + _i ) =/= 0 ) | 
						
							| 90 | 37 79 79 89 | divsubdird |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( A + _i ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) | 
						
							| 91 | 74 77 90 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( 1 + ( _i x. A ) ) / ( 1 - ( _i x. A ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) ) | 
						
							| 92 | 79 89 | dividd |  |-  ( A e. dom arctan -> ( ( A + _i ) / ( A + _i ) ) = 1 ) | 
						
							| 93 | 92 | oveq2d |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( A + _i ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) | 
						
							| 94 | 50 91 93 | 3eqtrd |  |-  ( A e. dom arctan -> ( ( exp ` ( log ` ( 1 + ( _i x. A ) ) ) ) / ( exp ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) | 
						
							| 95 | 43 45 94 | 3eqtrd |  |-  ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |