Metamath Proof Explorer


Theorem 2efiatan

Description: Value of the exponential of an artcangent. (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion 2efiatan Adomarctane2iarctanA=2iA+i1

Proof

Step Hyp Ref Expression
1 atanval AdomarctanarctanA=i2log1iAlog1+iA
2 1 oveq2d Adomarctan2iarctanA=2ii2log1iAlog1+iA
3 2cn 2
4 3 a1i Adomarctan2
5 ax-icn i
6 5 a1i Adomarctani
7 atancl AdomarctanarctanA
8 4 6 7 mulassd Adomarctan2iarctanA=2iarctanA
9 halfcl ii2
10 5 9 ax-mp i2
11 3 5 10 mulassi 2ii2=2ii2
12 3 5 10 mul12i 2ii2=i2i2
13 2ne0 20
14 5 3 13 divcan2i 2i2=i
15 14 oveq2i i2i2=ii
16 ixi ii=1
17 15 16 eqtri i2i2=1
18 11 12 17 3eqtri 2ii2=1
19 18 oveq1i 2ii2log1iAlog1+iA=-1log1iAlog1+iA
20 ax-1cn 1
21 atandm2 AdomarctanA1iA01+iA0
22 21 simp1bi AdomarctanA
23 mulcl iAiA
24 5 22 23 sylancr AdomarctaniA
25 subcl 1iA1iA
26 20 24 25 sylancr Adomarctan1iA
27 21 simp2bi Adomarctan1iA0
28 26 27 logcld Adomarctanlog1iA
29 addcl 1iA1+iA
30 20 24 29 sylancr Adomarctan1+iA
31 21 simp3bi Adomarctan1+iA0
32 30 31 logcld Adomarctanlog1+iA
33 28 32 subcld Adomarctanlog1iAlog1+iA
34 33 mulm1d Adomarctan-1log1iAlog1+iA=log1iAlog1+iA
35 19 34 eqtrid Adomarctan2ii2log1iAlog1+iA=log1iAlog1+iA
36 2mulicn 2i
37 36 a1i Adomarctan2i
38 10 a1i Adomarctani2
39 37 38 33 mulassd Adomarctan2ii2log1iAlog1+iA=2ii2log1iAlog1+iA
40 28 32 negsubdi2d Adomarctanlog1iAlog1+iA=log1+iAlog1iA
41 35 39 40 3eqtr3d Adomarctan2ii2log1iAlog1+iA=log1+iAlog1iA
42 2 8 41 3eqtr3d Adomarctan2iarctanA=log1+iAlog1iA
43 42 fveq2d Adomarctane2iarctanA=elog1+iAlog1iA
44 efsub log1+iAlog1iAelog1+iAlog1iA=elog1+iAelog1iA
45 32 28 44 syl2anc Adomarctanelog1+iAlog1iA=elog1+iAelog1iA
46 eflog 1+iA1+iA0elog1+iA=1+iA
47 30 31 46 syl2anc Adomarctanelog1+iA=1+iA
48 eflog 1iA1iA0elog1iA=1iA
49 26 27 48 syl2anc Adomarctanelog1iA=1iA
50 47 49 oveq12d Adomarctanelog1+iAelog1iA=1+iA1iA
51 negsub iAi+A=iA
52 5 22 51 sylancr Adomarctani+A=iA
53 6 mulridd Adomarctani1=i
54 16 oveq1i iiA=-1A
55 6 6 22 mulassd AdomarctaniiA=iiA
56 22 mulm1d Adomarctan-1A=A
57 54 55 56 3eqtr3a AdomarctaniiA=A
58 53 57 oveq12d Adomarctani1+iiA=i+A
59 6 22 6 pnpcan2d Adomarctani+i-A+i=iA
60 52 58 59 3eqtr4d Adomarctani1+iiA=i+i-A+i
61 20 a1i Adomarctan1
62 6 61 24 adddid Adomarctani1+iA=i1+iiA
63 6 2timesd Adomarctan2i=i+i
64 63 oveq1d Adomarctan2iA+i=i+i-A+i
65 60 62 64 3eqtr4d Adomarctani1+iA=2iA+i
66 6 61 24 subdid Adomarctani1iA=i1iiA
67 53 57 oveq12d Adomarctani1iiA=iA
68 subneg iAiA=i+A
69 5 22 68 sylancr AdomarctaniA=i+A
70 67 69 eqtrd Adomarctani1iiA=i+A
71 addcom iAi+A=A+i
72 5 22 71 sylancr Adomarctani+A=A+i
73 66 70 72 3eqtrd Adomarctani1iA=A+i
74 65 73 oveq12d Adomarctani1+iAi1iA=2iA+iA+i
75 ine0 i0
76 75 a1i Adomarctani0
77 30 26 6 27 76 divcan5d Adomarctani1+iAi1iA=1+iA1iA
78 addcl AiA+i
79 22 5 78 sylancl AdomarctanA+i
80 subneg AiAi=A+i
81 22 5 80 sylancl AdomarctanAi=A+i
82 atandm AdomarctanAAiAi
83 82 simp2bi AdomarctanAi
84 negicn i
85 subeq0 AiAi=0A=i
86 85 necon3bid AiAi0Ai
87 22 84 86 sylancl AdomarctanAi0Ai
88 83 87 mpbird AdomarctanAi0
89 81 88 eqnetrrd AdomarctanA+i0
90 37 79 79 89 divsubdird Adomarctan2iA+iA+i=2iA+iA+iA+i
91 74 77 90 3eqtr3d Adomarctan1+iA1iA=2iA+iA+iA+i
92 79 89 dividd AdomarctanA+iA+i=1
93 92 oveq2d Adomarctan2iA+iA+iA+i=2iA+i1
94 50 91 93 3eqtrd Adomarctanelog1+iAelog1iA=2iA+i1
95 43 45 94 3eqtrd Adomarctane2iarctanA=2iA+i1