| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atancl |
|- ( A e. dom arctan -> ( arctan ` A ) e. CC ) |
| 2 |
|
2efiatan |
|- ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) |
| 3 |
2
|
oveq1d |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) ) |
| 4 |
|
2mulicn |
|- ( 2 x. _i ) e. CC |
| 5 |
4
|
a1i |
|- ( A e. dom arctan -> ( 2 x. _i ) e. CC ) |
| 6 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| 7 |
6
|
simp1bi |
|- ( A e. dom arctan -> A e. CC ) |
| 8 |
|
ax-icn |
|- _i e. CC |
| 9 |
|
addcl |
|- ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) |
| 10 |
7 8 9
|
sylancl |
|- ( A e. dom arctan -> ( A + _i ) e. CC ) |
| 11 |
|
subneg |
|- ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) |
| 12 |
7 8 11
|
sylancl |
|- ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) |
| 13 |
6
|
simp2bi |
|- ( A e. dom arctan -> A =/= -u _i ) |
| 14 |
8
|
negcli |
|- -u _i e. CC |
| 15 |
|
subeq0 |
|- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) |
| 16 |
15
|
necon3bid |
|- ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 17 |
7 14 16
|
sylancl |
|- ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) |
| 18 |
13 17
|
mpbird |
|- ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) |
| 19 |
12 18
|
eqnetrrd |
|- ( A e. dom arctan -> ( A + _i ) =/= 0 ) |
| 20 |
5 10 19
|
divcld |
|- ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) e. CC ) |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
|
npcan |
|- ( ( ( ( 2 x. _i ) / ( A + _i ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
| 23 |
20 21 22
|
sylancl |
|- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
| 24 |
3 23
|
eqtrd |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) |
| 25 |
|
2muline0 |
|- ( 2 x. _i ) =/= 0 |
| 26 |
25
|
a1i |
|- ( A e. dom arctan -> ( 2 x. _i ) =/= 0 ) |
| 27 |
5 10 26 19
|
divne0d |
|- ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) =/= 0 ) |
| 28 |
24 27
|
eqnetrd |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) |
| 29 |
|
tanval3 |
|- ( ( ( arctan ` A ) e. CC /\ ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) |
| 30 |
1 28 29
|
syl2anc |
|- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) |
| 31 |
2
|
oveq1d |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) ) |
| 32 |
21
|
a1i |
|- ( A e. dom arctan -> 1 e. CC ) |
| 33 |
20 32 32
|
subsub4d |
|- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) ) |
| 34 |
|
df-2 |
|- 2 = ( 1 + 1 ) |
| 35 |
34
|
oveq2i |
|- ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) |
| 36 |
33 35
|
eqtr4di |
|- ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 37 |
31 36
|
eqtrd |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 38 |
|
2cn |
|- 2 e. CC |
| 39 |
|
mulcl |
|- ( ( 2 e. CC /\ ( A + _i ) e. CC ) -> ( 2 x. ( A + _i ) ) e. CC ) |
| 40 |
38 10 39
|
sylancr |
|- ( A e. dom arctan -> ( 2 x. ( A + _i ) ) e. CC ) |
| 41 |
5 40 10 19
|
divsubdird |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) ) |
| 42 |
|
mulneg12 |
|- ( ( 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) = ( 2 x. -u A ) ) |
| 43 |
38 7 42
|
sylancr |
|- ( A e. dom arctan -> ( -u 2 x. A ) = ( 2 x. -u A ) ) |
| 44 |
|
negsub |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) |
| 45 |
8 7 44
|
sylancr |
|- ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) |
| 46 |
45
|
oveq1d |
|- ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = ( ( _i - A ) - _i ) ) |
| 47 |
7
|
negcld |
|- ( A e. dom arctan -> -u A e. CC ) |
| 48 |
|
pncan2 |
|- ( ( _i e. CC /\ -u A e. CC ) -> ( ( _i + -u A ) - _i ) = -u A ) |
| 49 |
8 47 48
|
sylancr |
|- ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = -u A ) |
| 50 |
8
|
a1i |
|- ( A e. dom arctan -> _i e. CC ) |
| 51 |
50 7 50
|
subsub4d |
|- ( A e. dom arctan -> ( ( _i - A ) - _i ) = ( _i - ( A + _i ) ) ) |
| 52 |
46 49 51
|
3eqtr3rd |
|- ( A e. dom arctan -> ( _i - ( A + _i ) ) = -u A ) |
| 53 |
52
|
oveq2d |
|- ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( 2 x. -u A ) ) |
| 54 |
38
|
a1i |
|- ( A e. dom arctan -> 2 e. CC ) |
| 55 |
54 50 10
|
subdid |
|- ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) ) |
| 56 |
43 53 55
|
3eqtr2rd |
|- ( A e. dom arctan -> ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) = ( -u 2 x. A ) ) |
| 57 |
56
|
oveq1d |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) |
| 58 |
54 10 19
|
divcan4d |
|- ( A e. dom arctan -> ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) = 2 ) |
| 59 |
58
|
oveq2d |
|- ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 60 |
41 57 59
|
3eqtr3d |
|- ( A e. dom arctan -> ( ( -u 2 x. A ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) |
| 61 |
37 60
|
eqtr4d |
|- ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) |
| 62 |
24
|
oveq2d |
|- ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 63 |
8 38 8
|
mul12i |
|- ( _i x. ( 2 x. _i ) ) = ( 2 x. ( _i x. _i ) ) |
| 64 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 65 |
64
|
oveq2i |
|- ( 2 x. ( _i x. _i ) ) = ( 2 x. -u 1 ) |
| 66 |
21
|
negcli |
|- -u 1 e. CC |
| 67 |
38
|
mulm1i |
|- ( -u 1 x. 2 ) = -u 2 |
| 68 |
66 38 67
|
mulcomli |
|- ( 2 x. -u 1 ) = -u 2 |
| 69 |
63 65 68
|
3eqtri |
|- ( _i x. ( 2 x. _i ) ) = -u 2 |
| 70 |
69
|
oveq1i |
|- ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( -u 2 / ( A + _i ) ) |
| 71 |
50 5 10 19
|
divassd |
|- ( A e. dom arctan -> ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 72 |
70 71
|
eqtr3id |
|- ( A e. dom arctan -> ( -u 2 / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) |
| 73 |
62 72
|
eqtr4d |
|- ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( -u 2 / ( A + _i ) ) ) |
| 74 |
61 73
|
oveq12d |
|- ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) ) |
| 75 |
38
|
negcli |
|- -u 2 e. CC |
| 76 |
|
mulcl |
|- ( ( -u 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) e. CC ) |
| 77 |
75 7 76
|
sylancr |
|- ( A e. dom arctan -> ( -u 2 x. A ) e. CC ) |
| 78 |
75
|
a1i |
|- ( A e. dom arctan -> -u 2 e. CC ) |
| 79 |
|
2ne0 |
|- 2 =/= 0 |
| 80 |
38 79
|
negne0i |
|- -u 2 =/= 0 |
| 81 |
80
|
a1i |
|- ( A e. dom arctan -> -u 2 =/= 0 ) |
| 82 |
77 78 10 81 19
|
divcan7d |
|- ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = ( ( -u 2 x. A ) / -u 2 ) ) |
| 83 |
7 78 81
|
divcan3d |
|- ( A e. dom arctan -> ( ( -u 2 x. A ) / -u 2 ) = A ) |
| 84 |
82 83
|
eqtrd |
|- ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = A ) |
| 85 |
74 84
|
eqtrd |
|- ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = A ) |
| 86 |
30 85
|
eqtrd |
|- ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) |