| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atancl |  |-  ( A e. dom arctan -> ( arctan ` A ) e. CC ) | 
						
							| 2 |  | 2efiatan |  |-  ( A e. dom arctan -> ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) ) | 
						
							| 4 |  | 2mulicn |  |-  ( 2 x. _i ) e. CC | 
						
							| 5 | 4 | a1i |  |-  ( A e. dom arctan -> ( 2 x. _i ) e. CC ) | 
						
							| 6 |  | atandm |  |-  ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) | 
						
							| 7 | 6 | simp1bi |  |-  ( A e. dom arctan -> A e. CC ) | 
						
							| 8 |  | ax-icn |  |-  _i e. CC | 
						
							| 9 |  | addcl |  |-  ( ( A e. CC /\ _i e. CC ) -> ( A + _i ) e. CC ) | 
						
							| 10 | 7 8 9 | sylancl |  |-  ( A e. dom arctan -> ( A + _i ) e. CC ) | 
						
							| 11 |  | subneg |  |-  ( ( A e. CC /\ _i e. CC ) -> ( A - -u _i ) = ( A + _i ) ) | 
						
							| 12 | 7 8 11 | sylancl |  |-  ( A e. dom arctan -> ( A - -u _i ) = ( A + _i ) ) | 
						
							| 13 | 6 | simp2bi |  |-  ( A e. dom arctan -> A =/= -u _i ) | 
						
							| 14 | 8 | negcli |  |-  -u _i e. CC | 
						
							| 15 |  | subeq0 |  |-  ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) = 0 <-> A = -u _i ) ) | 
						
							| 16 | 15 | necon3bid |  |-  ( ( A e. CC /\ -u _i e. CC ) -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) | 
						
							| 17 | 7 14 16 | sylancl |  |-  ( A e. dom arctan -> ( ( A - -u _i ) =/= 0 <-> A =/= -u _i ) ) | 
						
							| 18 | 13 17 | mpbird |  |-  ( A e. dom arctan -> ( A - -u _i ) =/= 0 ) | 
						
							| 19 | 12 18 | eqnetrrd |  |-  ( A e. dom arctan -> ( A + _i ) =/= 0 ) | 
						
							| 20 | 5 10 19 | divcld |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) e. CC ) | 
						
							| 21 |  | ax-1cn |  |-  1 e. CC | 
						
							| 22 |  | npcan |  |-  ( ( ( ( 2 x. _i ) / ( A + _i ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) | 
						
							| 23 | 20 21 22 | sylancl |  |-  ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) | 
						
							| 24 | 3 23 | eqtrd |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) = ( ( 2 x. _i ) / ( A + _i ) ) ) | 
						
							| 25 |  | 2muline0 |  |-  ( 2 x. _i ) =/= 0 | 
						
							| 26 | 25 | a1i |  |-  ( A e. dom arctan -> ( 2 x. _i ) =/= 0 ) | 
						
							| 27 | 5 10 26 19 | divne0d |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) / ( A + _i ) ) =/= 0 ) | 
						
							| 28 | 24 27 | eqnetrd |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) | 
						
							| 29 |  | tanval3 |  |-  ( ( ( arctan ` A ) e. CC /\ ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) =/= 0 ) -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) | 
						
							| 30 | 1 28 29 | syl2anc |  |-  ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) ) | 
						
							| 31 | 2 | oveq1d |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) ) | 
						
							| 32 | 21 | a1i |  |-  ( A e. dom arctan -> 1 e. CC ) | 
						
							| 33 | 20 32 32 | subsub4d |  |-  ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) ) | 
						
							| 34 |  | df-2 |  |-  2 = ( 1 + 1 ) | 
						
							| 35 | 34 | oveq2i |  |-  ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( 1 + 1 ) ) | 
						
							| 36 | 33 35 | eqtr4di |  |-  ( A e. dom arctan -> ( ( ( ( 2 x. _i ) / ( A + _i ) ) - 1 ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) | 
						
							| 37 | 31 36 | eqtrd |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) | 
						
							| 38 |  | 2cn |  |-  2 e. CC | 
						
							| 39 |  | mulcl |  |-  ( ( 2 e. CC /\ ( A + _i ) e. CC ) -> ( 2 x. ( A + _i ) ) e. CC ) | 
						
							| 40 | 38 10 39 | sylancr |  |-  ( A e. dom arctan -> ( 2 x. ( A + _i ) ) e. CC ) | 
						
							| 41 | 5 40 10 19 | divsubdird |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) ) | 
						
							| 42 |  | mulneg12 |  |-  ( ( 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) = ( 2 x. -u A ) ) | 
						
							| 43 | 38 7 42 | sylancr |  |-  ( A e. dom arctan -> ( -u 2 x. A ) = ( 2 x. -u A ) ) | 
						
							| 44 |  | negsub |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i + -u A ) = ( _i - A ) ) | 
						
							| 45 | 8 7 44 | sylancr |  |-  ( A e. dom arctan -> ( _i + -u A ) = ( _i - A ) ) | 
						
							| 46 | 45 | oveq1d |  |-  ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = ( ( _i - A ) - _i ) ) | 
						
							| 47 | 7 | negcld |  |-  ( A e. dom arctan -> -u A e. CC ) | 
						
							| 48 |  | pncan2 |  |-  ( ( _i e. CC /\ -u A e. CC ) -> ( ( _i + -u A ) - _i ) = -u A ) | 
						
							| 49 | 8 47 48 | sylancr |  |-  ( A e. dom arctan -> ( ( _i + -u A ) - _i ) = -u A ) | 
						
							| 50 | 8 | a1i |  |-  ( A e. dom arctan -> _i e. CC ) | 
						
							| 51 | 50 7 50 | subsub4d |  |-  ( A e. dom arctan -> ( ( _i - A ) - _i ) = ( _i - ( A + _i ) ) ) | 
						
							| 52 | 46 49 51 | 3eqtr3rd |  |-  ( A e. dom arctan -> ( _i - ( A + _i ) ) = -u A ) | 
						
							| 53 | 52 | oveq2d |  |-  ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( 2 x. -u A ) ) | 
						
							| 54 | 38 | a1i |  |-  ( A e. dom arctan -> 2 e. CC ) | 
						
							| 55 | 54 50 10 | subdid |  |-  ( A e. dom arctan -> ( 2 x. ( _i - ( A + _i ) ) ) = ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) ) | 
						
							| 56 | 43 53 55 | 3eqtr2rd |  |-  ( A e. dom arctan -> ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) = ( -u 2 x. A ) ) | 
						
							| 57 | 56 | oveq1d |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) - ( 2 x. ( A + _i ) ) ) / ( A + _i ) ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) | 
						
							| 58 | 54 10 19 | divcan4d |  |-  ( A e. dom arctan -> ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) = 2 ) | 
						
							| 59 | 58 | oveq2d |  |-  ( A e. dom arctan -> ( ( ( 2 x. _i ) / ( A + _i ) ) - ( ( 2 x. ( A + _i ) ) / ( A + _i ) ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) | 
						
							| 60 | 41 57 59 | 3eqtr3d |  |-  ( A e. dom arctan -> ( ( -u 2 x. A ) / ( A + _i ) ) = ( ( ( 2 x. _i ) / ( A + _i ) ) - 2 ) ) | 
						
							| 61 | 37 60 | eqtr4d |  |-  ( A e. dom arctan -> ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) = ( ( -u 2 x. A ) / ( A + _i ) ) ) | 
						
							| 62 | 24 | oveq2d |  |-  ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) | 
						
							| 63 | 8 38 8 | mul12i |  |-  ( _i x. ( 2 x. _i ) ) = ( 2 x. ( _i x. _i ) ) | 
						
							| 64 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 65 | 64 | oveq2i |  |-  ( 2 x. ( _i x. _i ) ) = ( 2 x. -u 1 ) | 
						
							| 66 | 21 | negcli |  |-  -u 1 e. CC | 
						
							| 67 | 38 | mulm1i |  |-  ( -u 1 x. 2 ) = -u 2 | 
						
							| 68 | 66 38 67 | mulcomli |  |-  ( 2 x. -u 1 ) = -u 2 | 
						
							| 69 | 63 65 68 | 3eqtri |  |-  ( _i x. ( 2 x. _i ) ) = -u 2 | 
						
							| 70 | 69 | oveq1i |  |-  ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( -u 2 / ( A + _i ) ) | 
						
							| 71 | 50 5 10 19 | divassd |  |-  ( A e. dom arctan -> ( ( _i x. ( 2 x. _i ) ) / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) | 
						
							| 72 | 70 71 | eqtr3id |  |-  ( A e. dom arctan -> ( -u 2 / ( A + _i ) ) = ( _i x. ( ( 2 x. _i ) / ( A + _i ) ) ) ) | 
						
							| 73 | 62 72 | eqtr4d |  |-  ( A e. dom arctan -> ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) = ( -u 2 / ( A + _i ) ) ) | 
						
							| 74 | 61 73 | oveq12d |  |-  ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) ) | 
						
							| 75 | 38 | negcli |  |-  -u 2 e. CC | 
						
							| 76 |  | mulcl |  |-  ( ( -u 2 e. CC /\ A e. CC ) -> ( -u 2 x. A ) e. CC ) | 
						
							| 77 | 75 7 76 | sylancr |  |-  ( A e. dom arctan -> ( -u 2 x. A ) e. CC ) | 
						
							| 78 | 75 | a1i |  |-  ( A e. dom arctan -> -u 2 e. CC ) | 
						
							| 79 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 80 | 38 79 | negne0i |  |-  -u 2 =/= 0 | 
						
							| 81 | 80 | a1i |  |-  ( A e. dom arctan -> -u 2 =/= 0 ) | 
						
							| 82 | 77 78 10 81 19 | divcan7d |  |-  ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = ( ( -u 2 x. A ) / -u 2 ) ) | 
						
							| 83 | 7 78 81 | divcan3d |  |-  ( A e. dom arctan -> ( ( -u 2 x. A ) / -u 2 ) = A ) | 
						
							| 84 | 82 83 | eqtrd |  |-  ( A e. dom arctan -> ( ( ( -u 2 x. A ) / ( A + _i ) ) / ( -u 2 / ( A + _i ) ) ) = A ) | 
						
							| 85 | 74 84 | eqtrd |  |-  ( A e. dom arctan -> ( ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. ( arctan ` A ) ) ) ) + 1 ) ) ) = A ) | 
						
							| 86 | 30 85 | eqtrd |  |-  ( A e. dom arctan -> ( tan ` ( arctan ` A ) ) = A ) |