Step |
Hyp |
Ref |
Expression |
1 |
|
ax-icn |
|- _i e. CC |
2 |
|
simpl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> A e. CC ) |
3 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
4 |
1 2 3
|
sylancr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. A ) e. CC ) |
5 |
|
efcl |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
6 |
4 5
|
syl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) e. CC ) |
7 |
|
negicn |
|- -u _i e. CC |
8 |
|
mulcl |
|- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
9 |
7 2 8
|
sylancr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) e. CC ) |
10 |
|
efcl |
|- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
11 |
9 10
|
syl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) e. CC ) |
12 |
6 11
|
subcld |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
13 |
6 11
|
addcld |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) |
14 |
|
mulcl |
|- ( ( _i e. CC /\ ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) e. CC ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) |
15 |
1 13 14
|
sylancr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) e. CC ) |
16 |
|
2z |
|- 2 e. ZZ |
17 |
|
efexp |
|- ( ( ( _i x. A ) e. CC /\ 2 e. ZZ ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) |
18 |
4 16 17
|
sylancl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) ^ 2 ) ) |
19 |
6
|
sqvald |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) ^ 2 ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
20 |
18 19
|
eqtrd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) ) |
21 |
|
mulneg1 |
|- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
22 |
1 2 21
|
sylancr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( -u _i x. A ) = -u ( _i x. A ) ) |
23 |
22
|
fveq2d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( -u _i x. A ) ) = ( exp ` -u ( _i x. A ) ) ) |
24 |
23
|
oveq2d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) ) |
25 |
|
efcan |
|- ( ( _i x. A ) e. CC -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) |
26 |
4 25
|
syl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( exp ` -u ( _i x. A ) ) ) = 1 ) |
27 |
24 26
|
eqtr2d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 1 = ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) |
28 |
20 27
|
oveq12d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
29 |
6 6 11
|
adddid |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) + ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
30 |
28 29
|
eqtr4d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) |
31 |
30
|
oveq2d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
32 |
1
|
a1i |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i e. CC ) |
33 |
32 6 13
|
mul12d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
34 |
31 33
|
eqtrd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) = ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
35 |
|
2cn |
|- 2 e. CC |
36 |
|
mulcl |
|- ( ( 2 e. CC /\ ( _i x. A ) e. CC ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
37 |
35 4 36
|
sylancr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( 2 x. ( _i x. A ) ) e. CC ) |
38 |
|
efcl |
|- ( ( 2 x. ( _i x. A ) ) e. CC -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) |
39 |
37 38
|
syl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC ) |
40 |
|
ax-1cn |
|- 1 e. CC |
41 |
|
addcl |
|- ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) e. CC /\ 1 e. CC ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) |
42 |
39 40 41
|
sylancl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) e. CC ) |
43 |
|
ine0 |
|- _i =/= 0 |
44 |
43
|
a1i |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> _i =/= 0 ) |
45 |
|
simpr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) |
46 |
32 42 44 45
|
mulne0d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) =/= 0 ) |
47 |
34 46
|
eqnetrrd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) =/= 0 ) |
48 |
6 15 47
|
mulne0bbd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) =/= 0 ) |
49 |
|
efne0 |
|- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) =/= 0 ) |
50 |
4 49
|
syl |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( exp ` ( _i x. A ) ) =/= 0 ) |
51 |
12 15 6 48 50
|
divcan5d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
52 |
20 27
|
oveq12d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
53 |
6 6 11
|
subdid |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( exp ` ( _i x. A ) ) ) - ( ( exp ` ( _i x. A ) ) x. ( exp ` ( -u _i x. A ) ) ) ) ) |
54 |
52 53
|
eqtr4d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) = ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) ) |
55 |
54 34
|
oveq12d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) = ( ( ( exp ` ( _i x. A ) ) x. ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) / ( ( exp ` ( _i x. A ) ) x. ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) ) |
56 |
|
cosval |
|- ( A e. CC -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
57 |
56
|
adantr |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) = ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) ) |
58 |
|
2cnd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 e. CC ) |
59 |
32 13 48
|
mulne0bbd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) =/= 0 ) |
60 |
|
2ne0 |
|- 2 =/= 0 |
61 |
60
|
a1i |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> 2 =/= 0 ) |
62 |
13 58 59 61
|
divne0d |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) / 2 ) =/= 0 ) |
63 |
57 62
|
eqnetrd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( cos ` A ) =/= 0 ) |
64 |
|
tanval2 |
|- ( ( A e. CC /\ ( cos ` A ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
65 |
63 64
|
syldan |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( _i x. ( ( exp ` ( _i x. A ) ) + ( exp ` ( -u _i x. A ) ) ) ) ) ) |
66 |
51 55 65
|
3eqtr4rd |
|- ( ( A e. CC /\ ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) =/= 0 ) -> ( tan ` A ) = ( ( ( exp ` ( 2 x. ( _i x. A ) ) ) - 1 ) / ( _i x. ( ( exp ` ( 2 x. ( _i x. A ) ) ) + 1 ) ) ) ) |