| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-icn |
|
| 2 |
|
simpl |
|
| 3 |
|
mulcl |
|
| 4 |
1 2 3
|
sylancr |
|
| 5 |
|
efcl |
|
| 6 |
4 5
|
syl |
|
| 7 |
|
negicn |
|
| 8 |
|
mulcl |
|
| 9 |
7 2 8
|
sylancr |
|
| 10 |
|
efcl |
|
| 11 |
9 10
|
syl |
|
| 12 |
6 11
|
subcld |
|
| 13 |
6 11
|
addcld |
|
| 14 |
|
mulcl |
|
| 15 |
1 13 14
|
sylancr |
|
| 16 |
|
2z |
|
| 17 |
|
efexp |
|
| 18 |
4 16 17
|
sylancl |
|
| 19 |
6
|
sqvald |
|
| 20 |
18 19
|
eqtrd |
|
| 21 |
|
mulneg1 |
|
| 22 |
1 2 21
|
sylancr |
|
| 23 |
22
|
fveq2d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
|
efcan |
|
| 26 |
4 25
|
syl |
|
| 27 |
24 26
|
eqtr2d |
|
| 28 |
20 27
|
oveq12d |
|
| 29 |
6 6 11
|
adddid |
|
| 30 |
28 29
|
eqtr4d |
|
| 31 |
30
|
oveq2d |
|
| 32 |
1
|
a1i |
|
| 33 |
32 6 13
|
mul12d |
|
| 34 |
31 33
|
eqtrd |
|
| 35 |
|
2cn |
|
| 36 |
|
mulcl |
|
| 37 |
35 4 36
|
sylancr |
|
| 38 |
|
efcl |
|
| 39 |
37 38
|
syl |
|
| 40 |
|
ax-1cn |
|
| 41 |
|
addcl |
|
| 42 |
39 40 41
|
sylancl |
|
| 43 |
|
ine0 |
|
| 44 |
43
|
a1i |
|
| 45 |
|
simpr |
|
| 46 |
32 42 44 45
|
mulne0d |
|
| 47 |
34 46
|
eqnetrrd |
|
| 48 |
6 15 47
|
mulne0bbd |
|
| 49 |
|
efne0 |
|
| 50 |
4 49
|
syl |
|
| 51 |
12 15 6 48 50
|
divcan5d |
|
| 52 |
20 27
|
oveq12d |
|
| 53 |
6 6 11
|
subdid |
|
| 54 |
52 53
|
eqtr4d |
|
| 55 |
54 34
|
oveq12d |
|
| 56 |
|
cosval |
|
| 57 |
56
|
adantr |
|
| 58 |
|
2cnd |
|
| 59 |
32 13 48
|
mulne0bbd |
|
| 60 |
|
2ne0 |
|
| 61 |
60
|
a1i |
|
| 62 |
13 58 59 61
|
divne0d |
|
| 63 |
57 62
|
eqnetrd |
|
| 64 |
|
tanval2 |
|
| 65 |
63 64
|
syldan |
|
| 66 |
51 55 65
|
3eqtr4rd |
|