| Step |
Hyp |
Ref |
Expression |
| 1 |
|
tanval |
|
| 2 |
|
2cn |
|
| 3 |
|
ax-icn |
|
| 4 |
2 3
|
mulcomi |
|
| 5 |
4
|
oveq2i |
|
| 6 |
|
sinval |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simpl |
|
| 9 |
|
mulcl |
|
| 10 |
3 8 9
|
sylancr |
|
| 11 |
|
efcl |
|
| 12 |
10 11
|
syl |
|
| 13 |
|
negicn |
|
| 14 |
|
mulcl |
|
| 15 |
13 8 14
|
sylancr |
|
| 16 |
|
efcl |
|
| 17 |
15 16
|
syl |
|
| 18 |
12 17
|
subcld |
|
| 19 |
3
|
a1i |
|
| 20 |
2
|
a1i |
|
| 21 |
|
ine0 |
|
| 22 |
21
|
a1i |
|
| 23 |
|
2ne0 |
|
| 24 |
23
|
a1i |
|
| 25 |
18 19 20 22 24
|
divdiv1d |
|
| 26 |
5 7 25
|
3eqtr4a |
|
| 27 |
|
cosval |
|
| 28 |
27
|
adantr |
|
| 29 |
26 28
|
oveq12d |
|
| 30 |
1 29
|
eqtrd |
|
| 31 |
18 19 22
|
divcld |
|
| 32 |
12 17
|
addcld |
|
| 33 |
|
simpr |
|
| 34 |
28 33
|
eqnetrrd |
|
| 35 |
32 20 24
|
diveq0ad |
|
| 36 |
35
|
necon3bid |
|
| 37 |
34 36
|
mpbid |
|
| 38 |
31 32 20 37 24
|
divcan7d |
|
| 39 |
18 19 32 22 37
|
divdiv1d |
|
| 40 |
30 38 39
|
3eqtrd |
|