| Step | Hyp | Ref | Expression | 
						
							| 1 |  | atancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( arctan ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 2 |  | 2efiatan | ⊢ ( 𝐴  ∈  dom  arctan  →  ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 ) ) | 
						
							| 3 | 2 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 )  =  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  +  1 ) ) | 
						
							| 4 |  | 2mulicn | ⊢ ( 2  ·  i )  ∈  ℂ | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 2  ·  i )  ∈  ℂ ) | 
						
							| 6 |  | atandm | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  - i  ∧  𝐴  ≠  i ) ) | 
						
							| 7 | 6 | simp1bi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 8 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 9 |  | addcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝐴  +  i )  ∈  ℂ ) | 
						
							| 10 | 7 8 9 | sylancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴  +  i )  ∈  ℂ ) | 
						
							| 11 |  | subneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ )  →  ( 𝐴  −  - i )  =  ( 𝐴  +  i ) ) | 
						
							| 12 | 7 8 11 | sylancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴  −  - i )  =  ( 𝐴  +  i ) ) | 
						
							| 13 | 6 | simp2bi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ≠  - i ) | 
						
							| 14 | 8 | negcli | ⊢ - i  ∈  ℂ | 
						
							| 15 |  | subeq0 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - i  ∈  ℂ )  →  ( ( 𝐴  −  - i )  =  0  ↔  𝐴  =  - i ) ) | 
						
							| 16 | 15 | necon3bid | ⊢ ( ( 𝐴  ∈  ℂ  ∧  - i  ∈  ℂ )  →  ( ( 𝐴  −  - i )  ≠  0  ↔  𝐴  ≠  - i ) ) | 
						
							| 17 | 7 14 16 | sylancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 𝐴  −  - i )  ≠  0  ↔  𝐴  ≠  - i ) ) | 
						
							| 18 | 13 17 | mpbird | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴  −  - i )  ≠  0 ) | 
						
							| 19 | 12 18 | eqnetrrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 𝐴  +  i )  ≠  0 ) | 
						
							| 20 | 5 10 19 | divcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 21 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 22 |  | npcan | ⊢ ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  +  1 )  =  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) | 
						
							| 23 | 20 21 22 | sylancl | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  +  1 )  =  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) | 
						
							| 24 | 3 23 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 )  =  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) | 
						
							| 25 |  | 2muline0 | ⊢ ( 2  ·  i )  ≠  0 | 
						
							| 26 | 25 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 2  ·  i )  ≠  0 ) | 
						
							| 27 | 5 10 26 19 | divne0d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  ≠  0 ) | 
						
							| 28 | 24 27 | eqnetrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 )  ≠  0 ) | 
						
							| 29 |  | tanval3 | ⊢ ( ( ( arctan ‘ 𝐴 )  ∈  ℂ  ∧  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 )  ≠  0 )  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) ) ) ) | 
						
							| 30 | 1 28 29 | syl2anc | ⊢ ( 𝐴  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) ) ) ) | 
						
							| 31 | 2 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  =  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  −  1 ) ) | 
						
							| 32 | 21 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  1  ∈  ℂ ) | 
						
							| 33 | 20 32 32 | subsub4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  −  1 )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  ( 1  +  1 ) ) ) | 
						
							| 34 |  | df-2 | ⊢ 2  =  ( 1  +  1 ) | 
						
							| 35 | 34 | oveq2i | ⊢ ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  2 )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  ( 1  +  1 ) ) | 
						
							| 36 | 33 35 | eqtr4di | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  1 )  −  1 )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  2 ) ) | 
						
							| 37 | 31 36 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  2 ) ) | 
						
							| 38 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 39 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝐴  +  i )  ∈  ℂ )  →  ( 2  ·  ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 40 | 38 10 39 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 2  ·  ( 𝐴  +  i ) )  ∈  ℂ ) | 
						
							| 41 | 5 40 10 19 | divsubdird | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( 2  ·  i )  −  ( 2  ·  ( 𝐴  +  i ) ) )  /  ( 𝐴  +  i ) )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  ( ( 2  ·  ( 𝐴  +  i ) )  /  ( 𝐴  +  i ) ) ) ) | 
						
							| 42 |  | mulneg12 | ⊢ ( ( 2  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - 2  ·  𝐴 )  =  ( 2  ·  - 𝐴 ) ) | 
						
							| 43 | 38 7 42 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - 2  ·  𝐴 )  =  ( 2  ·  - 𝐴 ) ) | 
						
							| 44 |  | negsub | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  +  - 𝐴 )  =  ( i  −  𝐴 ) ) | 
						
							| 45 | 8 7 44 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  +  - 𝐴 )  =  ( i  −  𝐴 ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( i  +  - 𝐴 )  −  i )  =  ( ( i  −  𝐴 )  −  i ) ) | 
						
							| 47 | 7 | negcld | ⊢ ( 𝐴  ∈  dom  arctan  →  - 𝐴  ∈  ℂ ) | 
						
							| 48 |  | pncan2 | ⊢ ( ( i  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( ( i  +  - 𝐴 )  −  i )  =  - 𝐴 ) | 
						
							| 49 | 8 47 48 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( i  +  - 𝐴 )  −  i )  =  - 𝐴 ) | 
						
							| 50 | 8 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  i  ∈  ℂ ) | 
						
							| 51 | 50 7 50 | subsub4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( i  −  𝐴 )  −  i )  =  ( i  −  ( 𝐴  +  i ) ) ) | 
						
							| 52 | 46 49 51 | 3eqtr3rd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  −  ( 𝐴  +  i ) )  =  - 𝐴 ) | 
						
							| 53 | 52 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 2  ·  ( i  −  ( 𝐴  +  i ) ) )  =  ( 2  ·  - 𝐴 ) ) | 
						
							| 54 | 38 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  2  ∈  ℂ ) | 
						
							| 55 | 54 50 10 | subdid | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 2  ·  ( i  −  ( 𝐴  +  i ) ) )  =  ( ( 2  ·  i )  −  ( 2  ·  ( 𝐴  +  i ) ) ) ) | 
						
							| 56 | 43 53 55 | 3eqtr2rd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  ·  i )  −  ( 2  ·  ( 𝐴  +  i ) ) )  =  ( - 2  ·  𝐴 ) ) | 
						
							| 57 | 56 | oveq1d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( 2  ·  i )  −  ( 2  ·  ( 𝐴  +  i ) ) )  /  ( 𝐴  +  i ) )  =  ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) ) ) | 
						
							| 58 | 54 10 19 | divcan4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( 2  ·  ( 𝐴  +  i ) )  /  ( 𝐴  +  i ) )  =  2 ) | 
						
							| 59 | 58 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  ( ( 2  ·  ( 𝐴  +  i ) )  /  ( 𝐴  +  i ) ) )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  2 ) ) | 
						
							| 60 | 41 57 59 | 3eqtr3d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) )  =  ( ( ( 2  ·  i )  /  ( 𝐴  +  i ) )  −  2 ) ) | 
						
							| 61 | 37 60 | eqtr4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  =  ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) ) ) | 
						
							| 62 | 24 | oveq2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) )  =  ( i  ·  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) ) | 
						
							| 63 | 8 38 8 | mul12i | ⊢ ( i  ·  ( 2  ·  i ) )  =  ( 2  ·  ( i  ·  i ) ) | 
						
							| 64 |  | ixi | ⊢ ( i  ·  i )  =  - 1 | 
						
							| 65 | 64 | oveq2i | ⊢ ( 2  ·  ( i  ·  i ) )  =  ( 2  ·  - 1 ) | 
						
							| 66 | 21 | negcli | ⊢ - 1  ∈  ℂ | 
						
							| 67 | 38 | mulm1i | ⊢ ( - 1  ·  2 )  =  - 2 | 
						
							| 68 | 66 38 67 | mulcomli | ⊢ ( 2  ·  - 1 )  =  - 2 | 
						
							| 69 | 63 65 68 | 3eqtri | ⊢ ( i  ·  ( 2  ·  i ) )  =  - 2 | 
						
							| 70 | 69 | oveq1i | ⊢ ( ( i  ·  ( 2  ·  i ) )  /  ( 𝐴  +  i ) )  =  ( - 2  /  ( 𝐴  +  i ) ) | 
						
							| 71 | 50 5 10 19 | divassd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( i  ·  ( 2  ·  i ) )  /  ( 𝐴  +  i ) )  =  ( i  ·  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) ) | 
						
							| 72 | 70 71 | eqtr3id | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - 2  /  ( 𝐴  +  i ) )  =  ( i  ·  ( ( 2  ·  i )  /  ( 𝐴  +  i ) ) ) ) | 
						
							| 73 | 62 72 | eqtr4d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) )  =  ( - 2  /  ( 𝐴  +  i ) ) ) | 
						
							| 74 | 61 73 | oveq12d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) ) )  =  ( ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) )  /  ( - 2  /  ( 𝐴  +  i ) ) ) ) | 
						
							| 75 | 38 | negcli | ⊢ - 2  ∈  ℂ | 
						
							| 76 |  | mulcl | ⊢ ( ( - 2  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 77 | 75 7 76 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( - 2  ·  𝐴 )  ∈  ℂ ) | 
						
							| 78 | 75 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  - 2  ∈  ℂ ) | 
						
							| 79 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 80 | 38 79 | negne0i | ⊢ - 2  ≠  0 | 
						
							| 81 | 80 | a1i | ⊢ ( 𝐴  ∈  dom  arctan  →  - 2  ≠  0 ) | 
						
							| 82 | 77 78 10 81 19 | divcan7d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) )  /  ( - 2  /  ( 𝐴  +  i ) ) )  =  ( ( - 2  ·  𝐴 )  /  - 2 ) ) | 
						
							| 83 | 7 78 81 | divcan3d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( - 2  ·  𝐴 )  /  - 2 )  =  𝐴 ) | 
						
							| 84 | 82 83 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( - 2  ·  𝐴 )  /  ( 𝐴  +  i ) )  /  ( - 2  /  ( 𝐴  +  i ) ) )  =  𝐴 ) | 
						
							| 85 | 74 84 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  −  1 )  /  ( i  ·  ( ( exp ‘ ( 2  ·  ( i  ·  ( arctan ‘ 𝐴 ) ) ) )  +  1 ) ) )  =  𝐴 ) | 
						
							| 86 | 30 85 | eqtrd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( tan ‘ ( arctan ‘ 𝐴 ) )  =  𝐴 ) |