| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 2 |  | atandm2 | ⊢ ( 𝐴  ∈  dom  arctan  ↔  ( 𝐴  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝐴 ) )  ≠  0  ∧  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) ) | 
						
							| 3 | 2 | simp1bi | ⊢ ( 𝐴  ∈  dom  arctan  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 3 | recld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 5 |  | leloe | ⊢ ( ( 0  ∈  ℝ  ∧  ( ℜ ‘ 𝐴 )  ∈  ℝ )  →  ( 0  ≤  ( ℜ ‘ 𝐴 )  ↔  ( 0  <  ( ℜ ‘ 𝐴 )  ∨  0  =  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 6 | 1 4 5 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 0  ≤  ( ℜ ‘ 𝐴 )  ↔  ( 0  <  ( ℜ ‘ 𝐴 )  ∨  0  =  ( ℜ ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 6 | biimpa | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  ≤  ( ℜ ‘ 𝐴 ) )  →  ( 0  <  ( ℜ ‘ 𝐴 )  ∨  0  =  ( ℜ ‘ 𝐴 ) ) ) | 
						
							| 8 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 9 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 10 |  | mulcl | ⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 11 | 9 3 10 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 12 |  | addcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 13 | 8 11 12 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 14 | 2 | simp3bi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 15 | 13 14 | logcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 16 |  | subcl | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 17 | 8 11 16 | sylancr | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 18 | 2 | simp2bi | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 1  −  ( i  ·  𝐴 ) )  ≠  0 ) | 
						
							| 19 | 17 18 | logcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 20 | 15 19 | addcld | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 22 |  | pire | ⊢ π  ∈  ℝ | 
						
							| 23 | 22 | renegcli | ⊢ - π  ∈  ℝ | 
						
							| 24 | 23 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  ∈  ℝ ) | 
						
							| 25 | 19 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 26 | 25 | imcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 27 | 15 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℂ ) | 
						
							| 28 | 27 | imcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ℝ ) | 
						
							| 29 | 28 26 | readdcld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ∈  ℝ ) | 
						
							| 30 | 17 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 31 |  | im1 | ⊢ ( ℑ ‘ 1 )  =  0 | 
						
							| 32 | 31 | oveq1i | ⊢ ( ( ℑ ‘ 1 )  −  ( ℑ ‘ ( i  ·  𝐴 ) ) )  =  ( 0  −  ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 33 |  | df-neg | ⊢ - ( ℑ ‘ ( i  ·  𝐴 ) )  =  ( 0  −  ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 34 | 32 33 | eqtr4i | ⊢ ( ( ℑ ‘ 1 )  −  ( ℑ ‘ ( i  ·  𝐴 ) ) )  =  - ( ℑ ‘ ( i  ·  𝐴 ) ) | 
						
							| 35 | 11 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 36 |  | imsub | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( ℑ ‘ ( 1  −  ( i  ·  𝐴 ) ) )  =  ( ( ℑ ‘ 1 )  −  ( ℑ ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 37 | 8 35 36 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 1  −  ( i  ·  𝐴 ) ) )  =  ( ( ℑ ‘ 1 )  −  ( ℑ ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 38 | 3 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 39 |  | reim | ⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  =  ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  =  ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 41 | 40 | negeqd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( ℜ ‘ 𝐴 )  =  - ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 42 | 34 37 41 | 3eqtr4a | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 1  −  ( i  ·  𝐴 ) ) )  =  - ( ℜ ‘ 𝐴 ) ) | 
						
							| 43 | 4 | lt0neg2d | ⊢ ( 𝐴  ∈  dom  arctan  →  ( 0  <  ( ℜ ‘ 𝐴 )  ↔  - ( ℜ ‘ 𝐴 )  <  0 ) ) | 
						
							| 44 | 43 | biimpa | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - ( ℜ ‘ 𝐴 )  <  0 ) | 
						
							| 45 | 42 44 | eqbrtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 1  −  ( i  ·  𝐴 ) ) )  <  0 ) | 
						
							| 46 |  | argimlt0 | ⊢ ( ( ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ  ∧  ( ℑ ‘ ( 1  −  ( i  ·  𝐴 ) ) )  <  0 )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 47 | 30 45 46 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ( - π (,) 0 ) ) | 
						
							| 48 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ( - π (,) 0 )  →  ( - π  <  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  <  0 ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( - π  <  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  <  0 ) ) | 
						
							| 50 | 49 | simpld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 51 | 13 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ ) | 
						
							| 52 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℜ ‘ 𝐴 ) ) | 
						
							| 53 |  | imadd | ⊢ ( ( 1  ∈  ℂ  ∧  ( i  ·  𝐴 )  ∈  ℂ )  →  ( ℑ ‘ ( 1  +  ( i  ·  𝐴 ) ) )  =  ( ( ℑ ‘ 1 )  +  ( ℑ ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 54 | 8 35 53 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 1  +  ( i  ·  𝐴 ) ) )  =  ( ( ℑ ‘ 1 )  +  ( ℑ ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 55 | 40 | oveq2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 1 )  +  ( ℜ ‘ 𝐴 ) )  =  ( ( ℑ ‘ 1 )  +  ( ℑ ‘ ( i  ·  𝐴 ) ) ) ) | 
						
							| 56 | 31 | oveq1i | ⊢ ( ( ℑ ‘ 1 )  +  ( ℜ ‘ 𝐴 ) )  =  ( 0  +  ( ℜ ‘ 𝐴 ) ) | 
						
							| 57 | 38 | recld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 58 | 57 | recnd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 59 | 58 | addlidd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  +  ( ℜ ‘ 𝐴 ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 60 | 56 59 | eqtrid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ 1 )  +  ( ℜ ‘ 𝐴 ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 61 | 54 55 60 | 3eqtr2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( 1  +  ( i  ·  𝐴 ) ) )  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 62 | 52 61 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) | 
						
							| 63 |  | argimgt0 | ⊢ ( ( ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ  ∧  0  <  ( ℑ ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ( 0 (,) π ) ) | 
						
							| 64 | 51 62 63 | syl2anc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ( 0 (,) π ) ) | 
						
							| 65 |  | eliooord | ⊢ ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ( 0 (,) π )  →  ( 0  <  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  <  π ) ) | 
						
							| 66 | 64 65 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∧  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  <  π ) ) | 
						
							| 67 | 66 | simpld | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  <  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 68 | 28 26 | ltaddpos2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( 0  <  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ↔  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  <  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) ) | 
						
							| 69 | 67 68 | mpbid | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  <  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) | 
						
							| 70 | 24 26 29 50 69 | lttrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) | 
						
							| 71 | 27 25 | imaddd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  =  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) | 
						
							| 72 | 70 71 | breqtrrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  - π  <  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) ) ) | 
						
							| 73 | 22 | a1i | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  π  ∈  ℝ ) | 
						
							| 74 |  | 0red | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 75 | 49 | simprd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  <  0 ) | 
						
							| 76 | 26 74 28 75 | ltadd2dd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  <  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  0 ) ) | 
						
							| 77 | 28 | recnd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 78 | 77 | addridd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  0 )  =  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 79 | 76 78 | breqtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  <  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 80 | 66 | simprd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  <  π ) | 
						
							| 81 | 29 28 73 79 80 | lttrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  <  π ) | 
						
							| 82 | 29 73 81 | ltled | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( ℑ ‘ ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  +  ( ℑ ‘ ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ≤  π ) | 
						
							| 83 | 71 82 | eqbrtrd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ≤  π ) | 
						
							| 84 |  | ellogrn | ⊢ ( ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log  ↔  ( ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ℂ  ∧  - π  <  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ∧  ( ℑ ‘ ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) ) )  ≤  π ) ) | 
						
							| 85 | 21 72 83 84 | syl3anbrc | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  <  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 86 |  | 0red | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 87 | 11 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℂ ) | 
						
							| 88 |  | simpr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  0  =  ( ℜ ‘ 𝐴 ) ) | 
						
							| 89 | 3 | adantr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 90 | 89 39 | syl | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( ℜ ‘ 𝐴 )  =  ( ℑ ‘ ( i  ·  𝐴 ) ) ) | 
						
							| 91 | 88 90 | eqtr2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( ℑ ‘ ( i  ·  𝐴 ) )  =  0 ) | 
						
							| 92 | 87 91 | reim0bd | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℝ ) | 
						
							| 93 | 15 19 | addcomd | ⊢ ( 𝐴  ∈  dom  arctan  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 94 | 93 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  =  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) ) ) | 
						
							| 95 |  | logrncl | ⊢ ( ( ( 1  −  ( i  ·  𝐴 ) )  ∈  ℂ  ∧  ( 1  −  ( i  ·  𝐴 ) )  ≠  0 )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 96 | 17 18 95 | syl2anc | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 97 | 96 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 98 |  | 1re | ⊢ 1  ∈  ℝ | 
						
							| 99 | 92 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( i  ·  𝐴 )  ∈  ℝ ) | 
						
							| 100 |  | readdcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( i  ·  𝐴 )  ∈  ℝ )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 101 | 98 99 100 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 102 |  | 0red | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  0  ∈  ℝ ) | 
						
							| 103 |  | 1red | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  1  ∈  ℝ ) | 
						
							| 104 |  | 0lt1 | ⊢ 0  <  1 | 
						
							| 105 | 104 | a1i | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  0  <  1 ) | 
						
							| 106 |  | addge01 | ⊢ ( ( 1  ∈  ℝ  ∧  ( i  ·  𝐴 )  ∈  ℝ )  →  ( 0  ≤  ( i  ·  𝐴 )  ↔  1  ≤  ( 1  +  ( i  ·  𝐴 ) ) ) ) | 
						
							| 107 | 98 92 106 | sylancr | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( 0  ≤  ( i  ·  𝐴 )  ↔  1  ≤  ( 1  +  ( i  ·  𝐴 ) ) ) ) | 
						
							| 108 | 107 | biimpa | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  1  ≤  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 109 | 102 103 101 105 108 | ltletrd | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  0  <  ( 1  +  ( i  ·  𝐴 ) ) ) | 
						
							| 110 | 101 109 | elrpd | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( 1  +  ( i  ·  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 111 | 110 | relogcld | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 112 |  | logrnaddcl | ⊢ ( ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ran  log  ∧  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ℝ )  →  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 113 | 97 111 112 | syl2anc | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 114 | 94 113 | eqeltrd | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  0  ≤  ( i  ·  𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 115 |  | logrncl | ⊢ ( ( ( 1  +  ( i  ·  𝐴 ) )  ∈  ℂ  ∧  ( 1  +  ( i  ·  𝐴 ) )  ≠  0 )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 116 | 13 14 115 | syl2anc | ⊢ ( 𝐴  ∈  dom  arctan  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 117 | 116 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ran  log ) | 
						
							| 118 | 92 | adantr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( i  ·  𝐴 )  ∈  ℝ ) | 
						
							| 119 |  | resubcl | ⊢ ( ( 1  ∈  ℝ  ∧  ( i  ·  𝐴 )  ∈  ℝ )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 120 | 98 118 119 | sylancr | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℝ ) | 
						
							| 121 |  | 0red | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  0  ∈  ℝ ) | 
						
							| 122 |  | 1red | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  1  ∈  ℝ ) | 
						
							| 123 | 104 | a1i | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  0  <  1 ) | 
						
							| 124 |  | 1m0e1 | ⊢ ( 1  −  0 )  =  1 | 
						
							| 125 |  | 1red | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  1  ∈  ℝ ) | 
						
							| 126 | 92 86 125 | lesub2d | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( ( i  ·  𝐴 )  ≤  0  ↔  ( 1  −  0 )  ≤  ( 1  −  ( i  ·  𝐴 ) ) ) ) | 
						
							| 127 | 126 | biimpa | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( 1  −  0 )  ≤  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 128 | 124 127 | eqbrtrrid | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  1  ≤  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 129 | 121 122 120 123 128 | ltletrd | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  0  <  ( 1  −  ( i  ·  𝐴 ) ) ) | 
						
							| 130 | 120 129 | elrpd | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( 1  −  ( i  ·  𝐴 ) )  ∈  ℝ+ ) | 
						
							| 131 | 130 | relogcld | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℝ ) | 
						
							| 132 |  | logrnaddcl | ⊢ ( ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  ∈  ran  log  ∧  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) )  ∈  ℝ )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 133 | 117 131 132 | syl2anc | ⊢ ( ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  ∧  ( i  ·  𝐴 )  ≤  0 )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 134 | 86 92 114 133 | lecasei | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  =  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 135 | 85 134 | jaodan | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  ( 0  <  ( ℜ ‘ 𝐴 )  ∨  0  =  ( ℜ ‘ 𝐴 ) ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) | 
						
							| 136 | 7 135 | syldan | ⊢ ( ( 𝐴  ∈  dom  arctan  ∧  0  ≤  ( ℜ ‘ 𝐴 ) )  →  ( ( log ‘ ( 1  +  ( i  ·  𝐴 ) ) )  +  ( log ‘ ( 1  −  ( i  ·  𝐴 ) ) ) )  ∈  ran  log ) |