| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. CC ) |
| 2 |
|
simpr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) |
| 3 |
|
fveq2 |
|- ( A = -u _i -> ( Re ` A ) = ( Re ` -u _i ) ) |
| 4 |
|
ax-icn |
|- _i e. CC |
| 5 |
4
|
renegi |
|- ( Re ` -u _i ) = -u ( Re ` _i ) |
| 6 |
|
rei |
|- ( Re ` _i ) = 0 |
| 7 |
6
|
negeqi |
|- -u ( Re ` _i ) = -u 0 |
| 8 |
|
neg0 |
|- -u 0 = 0 |
| 9 |
5 7 8
|
3eqtri |
|- ( Re ` -u _i ) = 0 |
| 10 |
3 9
|
eqtrdi |
|- ( A = -u _i -> ( Re ` A ) = 0 ) |
| 11 |
10
|
necon3i |
|- ( ( Re ` A ) =/= 0 -> A =/= -u _i ) |
| 12 |
2 11
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= -u _i ) |
| 13 |
|
fveq2 |
|- ( A = _i -> ( Re ` A ) = ( Re ` _i ) ) |
| 14 |
13 6
|
eqtrdi |
|- ( A = _i -> ( Re ` A ) = 0 ) |
| 15 |
14
|
necon3i |
|- ( ( Re ` A ) =/= 0 -> A =/= _i ) |
| 16 |
2 15
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= _i ) |
| 17 |
|
atandm |
|- ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) |
| 18 |
1 12 16 17
|
syl3anbrc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. dom arctan ) |
| 19 |
|
halfcl |
|- ( _i e. CC -> ( _i / 2 ) e. CC ) |
| 20 |
4 19
|
ax-mp |
|- ( _i / 2 ) e. CC |
| 21 |
|
ax-1cn |
|- 1 e. CC |
| 22 |
|
mulcl |
|- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
| 23 |
4 1 22
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) |
| 24 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 25 |
21 23 24
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) e. CC ) |
| 26 |
|
atandm2 |
|- ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 27 |
18 26
|
sylib |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) |
| 28 |
27
|
simp2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) =/= 0 ) |
| 29 |
25 28
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) |
| 30 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 31 |
21 23 30
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) e. CC ) |
| 32 |
27
|
simp3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) =/= 0 ) |
| 33 |
31 32
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) |
| 34 |
29 33
|
subcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) |
| 35 |
|
cjmul |
|- ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 36 |
20 34 35
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 37 |
|
2ne0 |
|- 2 =/= 0 |
| 38 |
|
2cn |
|- 2 e. CC |
| 39 |
4 38
|
cjdivi |
|- ( 2 =/= 0 -> ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) ) |
| 40 |
37 39
|
ax-mp |
|- ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) |
| 41 |
|
divneg |
|- ( ( _i e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _i / 2 ) = ( -u _i / 2 ) ) |
| 42 |
4 38 37 41
|
mp3an |
|- -u ( _i / 2 ) = ( -u _i / 2 ) |
| 43 |
|
cji |
|- ( * ` _i ) = -u _i |
| 44 |
|
2re |
|- 2 e. RR |
| 45 |
|
cjre |
|- ( 2 e. RR -> ( * ` 2 ) = 2 ) |
| 46 |
44 45
|
ax-mp |
|- ( * ` 2 ) = 2 |
| 47 |
43 46
|
oveq12i |
|- ( ( * ` _i ) / ( * ` 2 ) ) = ( -u _i / 2 ) |
| 48 |
42 47
|
eqtr4i |
|- -u ( _i / 2 ) = ( ( * ` _i ) / ( * ` 2 ) ) |
| 49 |
40 48
|
eqtr4i |
|- ( * ` ( _i / 2 ) ) = -u ( _i / 2 ) |
| 50 |
49
|
oveq1i |
|- ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 51 |
34
|
cjcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) |
| 52 |
|
mulneg12 |
|- ( ( ( _i / 2 ) e. CC /\ ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 53 |
20 51 52
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 54 |
50 53
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 55 |
|
cjsub |
|- ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 56 |
29 33 55
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 57 |
|
imsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 58 |
21 23 57
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 59 |
|
reim |
|- ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 60 |
59
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) |
| 61 |
60
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` 1 ) - ( Re ` A ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) |
| 62 |
58 61
|
eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Re ` A ) ) ) |
| 63 |
|
df-neg |
|- -u ( Re ` A ) = ( 0 - ( Re ` A ) ) |
| 64 |
|
im1 |
|- ( Im ` 1 ) = 0 |
| 65 |
64
|
oveq1i |
|- ( ( Im ` 1 ) - ( Re ` A ) ) = ( 0 - ( Re ` A ) ) |
| 66 |
63 65
|
eqtr4i |
|- -u ( Re ` A ) = ( ( Im ` 1 ) - ( Re ` A ) ) |
| 67 |
62 66
|
eqtr4di |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) |
| 68 |
|
recl |
|- ( A e. CC -> ( Re ` A ) e. RR ) |
| 69 |
68
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. RR ) |
| 70 |
69
|
recnd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. CC ) |
| 71 |
70 2
|
negne0d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( Re ` A ) =/= 0 ) |
| 72 |
67 71
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) |
| 73 |
|
logcj |
|- ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 74 |
25 72 73
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) |
| 75 |
|
cjsub |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
| 76 |
21 23 75
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) |
| 77 |
|
1re |
|- 1 e. RR |
| 78 |
|
cjre |
|- ( 1 e. RR -> ( * ` 1 ) = 1 ) |
| 79 |
77 78
|
mp1i |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` 1 ) = 1 ) |
| 80 |
|
cjmul |
|- ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
| 81 |
4 1 80
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) |
| 82 |
43
|
oveq1i |
|- ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) |
| 83 |
|
cjcl |
|- ( A e. CC -> ( * ` A ) e. CC ) |
| 84 |
83
|
adantr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. CC ) |
| 85 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 86 |
4 84 85
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 87 |
82 86
|
eqtrid |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` _i ) x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 88 |
81 87
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = -u ( _i x. ( * ` A ) ) ) |
| 89 |
79 88
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) = ( 1 - -u ( _i x. ( * ` A ) ) ) ) |
| 90 |
|
mulcl |
|- ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( _i x. ( * ` A ) ) e. CC ) |
| 91 |
4 84 90
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( * ` A ) ) e. CC ) |
| 92 |
|
subneg |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
| 93 |
21 91 92
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
| 94 |
76 89 93
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) |
| 95 |
94
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
| 96 |
74 95
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) |
| 97 |
|
imadd |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 98 |
21 23 97
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 99 |
60
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) ) |
| 100 |
64
|
oveq1i |
|- ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) |
| 101 |
99 100
|
eqtr4di |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) |
| 102 |
70
|
addlidd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) |
| 103 |
98 101 102
|
3eqtr2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) |
| 104 |
103 2
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) |
| 105 |
|
logcj |
|- ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 106 |
31 104 105
|
syl2anc |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) |
| 107 |
|
cjadd |
|- ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
| 108 |
21 23 107
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) |
| 109 |
79 88
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) = ( 1 + -u ( _i x. ( * ` A ) ) ) ) |
| 110 |
|
negsub |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
| 111 |
21 91 110
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
| 112 |
108 109 111
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) |
| 113 |
112
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
| 114 |
106 113
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) |
| 115 |
96 114
|
oveq12d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 116 |
56 115
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 117 |
116
|
negeqd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) |
| 118 |
|
addcl |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
| 119 |
21 91 118
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) |
| 120 |
|
atandmcj |
|- ( A e. dom arctan -> ( * ` A ) e. dom arctan ) |
| 121 |
18 120
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. dom arctan ) |
| 122 |
|
atandm2 |
|- ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) ) |
| 123 |
122
|
simp3bi |
|- ( ( * ` A ) e. dom arctan -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 124 |
121 123
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 125 |
119 124
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) e. CC ) |
| 126 |
|
subcl |
|- ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
| 127 |
21 91 126
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) |
| 128 |
122
|
simp2bi |
|- ( ( * ` A ) e. dom arctan -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 129 |
121 128
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) |
| 130 |
127 129
|
logcld |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) e. CC ) |
| 131 |
125 130
|
negsubdi2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
| 132 |
117 131
|
eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) |
| 133 |
132
|
oveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 134 |
36 54 133
|
3eqtrd |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 135 |
|
atanval |
|- ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 136 |
18 135
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) |
| 137 |
136
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) |
| 138 |
|
atanval |
|- ( ( * ` A ) e. dom arctan -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 139 |
121 138
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) |
| 140 |
134 137 139
|
3eqtr4d |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) |
| 141 |
18 140
|
jca |
|- ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |