| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. CC ) | 
						
							| 2 |  | simpr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) =/= 0 ) | 
						
							| 3 |  | fveq2 |  |-  ( A = -u _i -> ( Re ` A ) = ( Re ` -u _i ) ) | 
						
							| 4 |  | ax-icn |  |-  _i e. CC | 
						
							| 5 | 4 | renegi |  |-  ( Re ` -u _i ) = -u ( Re ` _i ) | 
						
							| 6 |  | rei |  |-  ( Re ` _i ) = 0 | 
						
							| 7 | 6 | negeqi |  |-  -u ( Re ` _i ) = -u 0 | 
						
							| 8 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 9 | 5 7 8 | 3eqtri |  |-  ( Re ` -u _i ) = 0 | 
						
							| 10 | 3 9 | eqtrdi |  |-  ( A = -u _i -> ( Re ` A ) = 0 ) | 
						
							| 11 | 10 | necon3i |  |-  ( ( Re ` A ) =/= 0 -> A =/= -u _i ) | 
						
							| 12 | 2 11 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= -u _i ) | 
						
							| 13 |  | fveq2 |  |-  ( A = _i -> ( Re ` A ) = ( Re ` _i ) ) | 
						
							| 14 | 13 6 | eqtrdi |  |-  ( A = _i -> ( Re ` A ) = 0 ) | 
						
							| 15 | 14 | necon3i |  |-  ( ( Re ` A ) =/= 0 -> A =/= _i ) | 
						
							| 16 | 2 15 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A =/= _i ) | 
						
							| 17 |  | atandm |  |-  ( A e. dom arctan <-> ( A e. CC /\ A =/= -u _i /\ A =/= _i ) ) | 
						
							| 18 | 1 12 16 17 | syl3anbrc |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> A e. dom arctan ) | 
						
							| 19 |  | halfcl |  |-  ( _i e. CC -> ( _i / 2 ) e. CC ) | 
						
							| 20 | 4 19 | ax-mp |  |-  ( _i / 2 ) e. CC | 
						
							| 21 |  | ax-1cn |  |-  1 e. CC | 
						
							| 22 |  | mulcl |  |-  ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) | 
						
							| 23 | 4 1 22 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. A ) e. CC ) | 
						
							| 24 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 25 | 21 23 24 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) e. CC ) | 
						
							| 26 |  | atandm2 |  |-  ( A e. dom arctan <-> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 27 | 18 26 | sylib |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. CC /\ ( 1 - ( _i x. A ) ) =/= 0 /\ ( 1 + ( _i x. A ) ) =/= 0 ) ) | 
						
							| 28 | 27 | simp2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. A ) ) =/= 0 ) | 
						
							| 29 | 25 28 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. A ) ) ) e. CC ) | 
						
							| 30 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 31 | 21 23 30 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) e. CC ) | 
						
							| 32 | 27 | simp3d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. A ) ) =/= 0 ) | 
						
							| 33 | 31 32 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) | 
						
							| 34 | 29 33 | subcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) | 
						
							| 35 |  | cjmul |  |-  ( ( ( _i / 2 ) e. CC /\ ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) e. CC ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 36 | 20 34 35 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 37 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 38 |  | 2cn |  |-  2 e. CC | 
						
							| 39 | 4 38 | cjdivi |  |-  ( 2 =/= 0 -> ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) ) | 
						
							| 40 | 37 39 | ax-mp |  |-  ( * ` ( _i / 2 ) ) = ( ( * ` _i ) / ( * ` 2 ) ) | 
						
							| 41 |  | divneg |  |-  ( ( _i e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _i / 2 ) = ( -u _i / 2 ) ) | 
						
							| 42 | 4 38 37 41 | mp3an |  |-  -u ( _i / 2 ) = ( -u _i / 2 ) | 
						
							| 43 |  | cji |  |-  ( * ` _i ) = -u _i | 
						
							| 44 |  | 2re |  |-  2 e. RR | 
						
							| 45 |  | cjre |  |-  ( 2 e. RR -> ( * ` 2 ) = 2 ) | 
						
							| 46 | 44 45 | ax-mp |  |-  ( * ` 2 ) = 2 | 
						
							| 47 | 43 46 | oveq12i |  |-  ( ( * ` _i ) / ( * ` 2 ) ) = ( -u _i / 2 ) | 
						
							| 48 | 42 47 | eqtr4i |  |-  -u ( _i / 2 ) = ( ( * ` _i ) / ( * ` 2 ) ) | 
						
							| 49 | 40 48 | eqtr4i |  |-  ( * ` ( _i / 2 ) ) = -u ( _i / 2 ) | 
						
							| 50 | 49 | oveq1i |  |-  ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 51 | 34 | cjcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) | 
						
							| 52 |  | mulneg12 |  |-  ( ( ( _i / 2 ) e. CC /\ ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) e. CC ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 53 | 20 51 52 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u ( _i / 2 ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 54 | 50 53 | eqtrid |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( _i / 2 ) ) x. ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 55 |  | cjsub |  |-  ( ( ( log ` ( 1 - ( _i x. A ) ) ) e. CC /\ ( log ` ( 1 + ( _i x. A ) ) ) e. CC ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 56 | 29 33 55 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 57 |  | imsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) | 
						
							| 58 | 21 23 57 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) | 
						
							| 59 |  | reim |  |-  ( A e. CC -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 60 | 59 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) = ( Im ` ( _i x. A ) ) ) | 
						
							| 61 | 60 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( Im ` 1 ) - ( Re ` A ) ) = ( ( Im ` 1 ) - ( Im ` ( _i x. A ) ) ) ) | 
						
							| 62 | 58 61 | eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = ( ( Im ` 1 ) - ( Re ` A ) ) ) | 
						
							| 63 |  | df-neg |  |-  -u ( Re ` A ) = ( 0 - ( Re ` A ) ) | 
						
							| 64 |  | im1 |  |-  ( Im ` 1 ) = 0 | 
						
							| 65 | 64 | oveq1i |  |-  ( ( Im ` 1 ) - ( Re ` A ) ) = ( 0 - ( Re ` A ) ) | 
						
							| 66 | 63 65 | eqtr4i |  |-  -u ( Re ` A ) = ( ( Im ` 1 ) - ( Re ` A ) ) | 
						
							| 67 | 62 66 | eqtr4di |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) = -u ( Re ` A ) ) | 
						
							| 68 |  | recl |  |-  ( A e. CC -> ( Re ` A ) e. RR ) | 
						
							| 69 | 68 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. RR ) | 
						
							| 70 | 69 | recnd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Re ` A ) e. CC ) | 
						
							| 71 | 70 2 | negne0d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( Re ` A ) =/= 0 ) | 
						
							| 72 | 67 71 | eqnetrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) | 
						
							| 73 |  | logcj |  |-  ( ( ( 1 - ( _i x. A ) ) e. CC /\ ( Im ` ( 1 - ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 74 | 25 72 73 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) ) | 
						
							| 75 |  | cjsub |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) | 
						
							| 76 | 21 23 75 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) ) | 
						
							| 77 |  | 1re |  |-  1 e. RR | 
						
							| 78 |  | cjre |  |-  ( 1 e. RR -> ( * ` 1 ) = 1 ) | 
						
							| 79 | 77 78 | mp1i |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` 1 ) = 1 ) | 
						
							| 80 |  | cjmul |  |-  ( ( _i e. CC /\ A e. CC ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) | 
						
							| 81 | 4 1 80 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = ( ( * ` _i ) x. ( * ` A ) ) ) | 
						
							| 82 | 43 | oveq1i |  |-  ( ( * ` _i ) x. ( * ` A ) ) = ( -u _i x. ( * ` A ) ) | 
						
							| 83 |  | cjcl |  |-  ( A e. CC -> ( * ` A ) e. CC ) | 
						
							| 84 | 83 | adantr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. CC ) | 
						
							| 85 |  | mulneg1 |  |-  ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) | 
						
							| 86 | 4 84 85 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( -u _i x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) | 
						
							| 87 | 82 86 | eqtrid |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` _i ) x. ( * ` A ) ) = -u ( _i x. ( * ` A ) ) ) | 
						
							| 88 | 81 87 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( _i x. A ) ) = -u ( _i x. ( * ` A ) ) ) | 
						
							| 89 | 79 88 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) - ( * ` ( _i x. A ) ) ) = ( 1 - -u ( _i x. ( * ` A ) ) ) ) | 
						
							| 90 |  | mulcl |  |-  ( ( _i e. CC /\ ( * ` A ) e. CC ) -> ( _i x. ( * ` A ) ) e. CC ) | 
						
							| 91 | 4 84 90 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( _i x. ( * ` A ) ) e. CC ) | 
						
							| 92 |  | subneg |  |-  ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) | 
						
							| 93 | 21 91 92 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - -u ( _i x. ( * ` A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) | 
						
							| 94 | 76 89 93 | 3eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 - ( _i x. A ) ) ) = ( 1 + ( _i x. ( * ` A ) ) ) ) | 
						
							| 95 | 94 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) | 
						
							| 96 | 74 95 | eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) = ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) | 
						
							| 97 |  | imadd |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 98 | 21 23 97 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 99 | 60 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 100 | 64 | oveq1i |  |-  ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) = ( 0 + ( Im ` ( _i x. A ) ) ) | 
						
							| 101 | 99 100 | eqtr4di |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( ( Im ` 1 ) + ( Im ` ( _i x. A ) ) ) ) | 
						
							| 102 | 70 | addlidd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 0 + ( Re ` A ) ) = ( Re ` A ) ) | 
						
							| 103 | 98 101 102 | 3eqtr2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) = ( Re ` A ) ) | 
						
							| 104 | 103 2 | eqnetrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) | 
						
							| 105 |  | logcj |  |-  ( ( ( 1 + ( _i x. A ) ) e. CC /\ ( Im ` ( 1 + ( _i x. A ) ) ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 106 | 31 104 105 | syl2anc |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) | 
						
							| 107 |  | cjadd |  |-  ( ( 1 e. CC /\ ( _i x. A ) e. CC ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) | 
						
							| 108 | 21 23 107 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) ) | 
						
							| 109 | 79 88 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` 1 ) + ( * ` ( _i x. A ) ) ) = ( 1 + -u ( _i x. ( * ` A ) ) ) ) | 
						
							| 110 |  | negsub |  |-  ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) | 
						
							| 111 | 21 91 110 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + -u ( _i x. ( * ` A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) | 
						
							| 112 | 108 109 111 | 3eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( 1 + ( _i x. A ) ) ) = ( 1 - ( _i x. ( * ` A ) ) ) ) | 
						
							| 113 | 112 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( * ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) | 
						
							| 114 | 106 113 | eqtr3d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) = ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) | 
						
							| 115 | 96 114 | oveq12d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( * ` ( log ` ( 1 - ( _i x. A ) ) ) ) - ( * ` ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) | 
						
							| 116 | 56 115 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) | 
						
							| 117 | 116 | negeqd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) ) | 
						
							| 118 |  | addcl |  |-  ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) | 
						
							| 119 | 21 91 118 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) e. CC ) | 
						
							| 120 |  | atandmcj |  |-  ( A e. dom arctan -> ( * ` A ) e. dom arctan ) | 
						
							| 121 | 18 120 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` A ) e. dom arctan ) | 
						
							| 122 |  | atandm2 |  |-  ( ( * ` A ) e. dom arctan <-> ( ( * ` A ) e. CC /\ ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 /\ ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) ) | 
						
							| 123 | 122 | simp3bi |  |-  ( ( * ` A ) e. dom arctan -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) | 
						
							| 124 | 121 123 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 + ( _i x. ( * ` A ) ) ) =/= 0 ) | 
						
							| 125 | 119 124 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) e. CC ) | 
						
							| 126 |  | subcl |  |-  ( ( 1 e. CC /\ ( _i x. ( * ` A ) ) e. CC ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) | 
						
							| 127 | 21 91 126 | sylancr |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) e. CC ) | 
						
							| 128 | 122 | simp2bi |  |-  ( ( * ` A ) e. dom arctan -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) | 
						
							| 129 | 121 128 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( 1 - ( _i x. ( * ` A ) ) ) =/= 0 ) | 
						
							| 130 | 127 129 | logcld |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) e. CC ) | 
						
							| 131 | 125 130 | negsubdi2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) | 
						
							| 132 | 117 131 | eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) = ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) | 
						
							| 133 | 132 | oveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( ( _i / 2 ) x. -u ( * ` ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) | 
						
							| 134 | 36 54 133 | 3eqtrd |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) | 
						
							| 135 |  | atanval |  |-  ( A e. dom arctan -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 136 | 18 135 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` A ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) | 
						
							| 137 | 136 | fveq2d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( * ` ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. A ) ) ) - ( log ` ( 1 + ( _i x. A ) ) ) ) ) ) ) | 
						
							| 138 |  | atanval |  |-  ( ( * ` A ) e. dom arctan -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) | 
						
							| 139 | 121 138 | syl |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( arctan ` ( * ` A ) ) = ( ( _i / 2 ) x. ( ( log ` ( 1 - ( _i x. ( * ` A ) ) ) ) - ( log ` ( 1 + ( _i x. ( * ` A ) ) ) ) ) ) ) | 
						
							| 140 | 134 137 139 | 3eqtr4d |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) | 
						
							| 141 | 18 140 | jca |  |-  ( ( A e. CC /\ ( Re ` A ) =/= 0 ) -> ( A e. dom arctan /\ ( * ` ( arctan ` A ) ) = ( arctan ` ( * ` A ) ) ) ) |