Description: The arctangent of zero is zero. (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | atan0 | ⊢ ( arctan ‘ 0 ) = 0 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | neg0 | ⊢ - 0 = 0 | |
| 2 | 1 | fveq2i | ⊢ ( arctan ‘ - 0 ) = ( arctan ‘ 0 ) | 
| 3 | 0re | ⊢ 0 ∈ ℝ | |
| 4 | atanre | ⊢ ( 0 ∈ ℝ → 0 ∈ dom arctan ) | |
| 5 | atanneg | ⊢ ( 0 ∈ dom arctan → ( arctan ‘ - 0 ) = - ( arctan ‘ 0 ) ) | |
| 6 | 3 4 5 | mp2b | ⊢ ( arctan ‘ - 0 ) = - ( arctan ‘ 0 ) | 
| 7 | 2 6 | eqtr3i | ⊢ ( arctan ‘ 0 ) = - ( arctan ‘ 0 ) | 
| 8 | atancl | ⊢ ( 0 ∈ dom arctan → ( arctan ‘ 0 ) ∈ ℂ ) | |
| 9 | 3 4 8 | mp2b | ⊢ ( arctan ‘ 0 ) ∈ ℂ | 
| 10 | 9 | eqnegi | ⊢ ( ( arctan ‘ 0 ) = - ( arctan ‘ 0 ) ↔ ( arctan ‘ 0 ) = 0 ) | 
| 11 | 7 10 | mpbi | ⊢ ( arctan ‘ 0 ) = 0 |