| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							tanval | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  =  ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							sincl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( sin ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( sin ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							coscl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( cos ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								4
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( cos ‘ 𝐴 )  ≠  0 )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							divcld | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( ( sin ‘ 𝐴 )  /  ( cos ‘ 𝐴 ) )  ∈  ℂ )  | 
						
						
							| 8 | 
							
								1 7
							 | 
							eqeltrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( cos ‘ 𝐴 )  ≠  0 )  →  ( tan ‘ 𝐴 )  ∈  ℂ )  |