Metamath Proof Explorer


Theorem lfgredgge2

Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses lfuhgrnloopv.i
|- I = ( iEdg ` G )
lfuhgrnloopv.a
|- A = dom I
lfuhgrnloopv.e
|- E = { x e. ~P V | 2 <_ ( # ` x ) }
Assertion lfgredgge2
|- ( ( I : A --> E /\ X e. A ) -> 2 <_ ( # ` ( I ` X ) ) )

Proof

Step Hyp Ref Expression
1 lfuhgrnloopv.i
 |-  I = ( iEdg ` G )
2 lfuhgrnloopv.a
 |-  A = dom I
3 lfuhgrnloopv.e
 |-  E = { x e. ~P V | 2 <_ ( # ` x ) }
4 eqid
 |-  A = A
5 4 3 feq23i
 |-  ( I : A --> E <-> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } )
6 5 biimpi
 |-  ( I : A --> E -> I : A --> { x e. ~P V | 2 <_ ( # ` x ) } )
7 6 ffvelrnda
 |-  ( ( I : A --> E /\ X e. A ) -> ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } )
8 fveq2
 |-  ( y = ( I ` X ) -> ( # ` y ) = ( # ` ( I ` X ) ) )
9 8 breq2d
 |-  ( y = ( I ` X ) -> ( 2 <_ ( # ` y ) <-> 2 <_ ( # ` ( I ` X ) ) ) )
10 fveq2
 |-  ( x = y -> ( # ` x ) = ( # ` y ) )
11 10 breq2d
 |-  ( x = y -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` y ) ) )
12 11 cbvrabv
 |-  { x e. ~P V | 2 <_ ( # ` x ) } = { y e. ~P V | 2 <_ ( # ` y ) }
13 9 12 elrab2
 |-  ( ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( I ` X ) e. ~P V /\ 2 <_ ( # ` ( I ` X ) ) ) )
14 13 simprbi
 |-  ( ( I ` X ) e. { x e. ~P V | 2 <_ ( # ` x ) } -> 2 <_ ( # ` ( I ` X ) ) )
15 7 14 syl
 |-  ( ( I : A --> E /\ X e. A ) -> 2 <_ ( # ` ( I ` X ) ) )