Metamath Proof Explorer


Theorem lfgredgge2

Description: An edge of a loop-free graph has at least two ends. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses lfuhgrnloopv.i 𝐼 = ( iEdg ‘ 𝐺 )
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
Assertion lfgredgge2 ( ( 𝐼 : 𝐴𝐸𝑋𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 lfuhgrnloopv.i 𝐼 = ( iEdg ‘ 𝐺 )
2 lfuhgrnloopv.a 𝐴 = dom 𝐼
3 lfuhgrnloopv.e 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
4 eqid 𝐴 = 𝐴
5 4 3 feq23i ( 𝐼 : 𝐴𝐸𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
6 5 biimpi ( 𝐼 : 𝐴𝐸𝐼 : 𝐴 ⟶ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
7 6 ffvelrnda ( ( 𝐼 : 𝐴𝐸𝑋𝐴 ) → ( 𝐼𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } )
8 fveq2 ( 𝑦 = ( 𝐼𝑋 ) → ( ♯ ‘ 𝑦 ) = ( ♯ ‘ ( 𝐼𝑋 ) ) )
9 8 breq2d ( 𝑦 = ( 𝐼𝑋 ) → ( 2 ≤ ( ♯ ‘ 𝑦 ) ↔ 2 ≤ ( ♯ ‘ ( 𝐼𝑋 ) ) ) )
10 fveq2 ( 𝑥 = 𝑦 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) )
11 10 breq2d ( 𝑥 = 𝑦 → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ ( ♯ ‘ 𝑦 ) ) )
12 11 cbvrabv { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑦 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑦 ) }
13 9 12 elrab2 ( ( 𝐼𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ↔ ( ( 𝐼𝑋 ) ∈ 𝒫 𝑉 ∧ 2 ≤ ( ♯ ‘ ( 𝐼𝑋 ) ) ) )
14 13 simprbi ( ( 𝐼𝑋 ) ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } → 2 ≤ ( ♯ ‘ ( 𝐼𝑋 ) ) )
15 7 14 syl ( ( 𝐼 : 𝐴𝐸𝑋𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼𝑋 ) ) )