Metamath Proof Explorer


Theorem lfgrnloop

Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses lfuhgrnloopv.i 𝐼 = ( iEdg ‘ 𝐺 )
lfuhgrnloopv.a 𝐴 = dom 𝐼
lfuhgrnloopv.e 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
Assertion lfgrnloop ( 𝐼 : 𝐴𝐸 → { 𝑥𝐴 ∣ ( 𝐼𝑥 ) = { 𝑈 } } = ∅ )

Proof

Step Hyp Ref Expression
1 lfuhgrnloopv.i 𝐼 = ( iEdg ‘ 𝐺 )
2 lfuhgrnloopv.a 𝐴 = dom 𝐼
3 lfuhgrnloopv.e 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
4 nfcv 𝑥 𝐼
5 nfcv 𝑥 𝐴
6 nfrab1 𝑥 { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) }
7 3 6 nfcxfr 𝑥 𝐸
8 4 5 7 nff 𝑥 𝐼 : 𝐴𝐸
9 hashsn01 ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 )
10 2pos 0 < 2
11 0re 0 ∈ ℝ
12 2re 2 ∈ ℝ
13 11 12 ltnlei ( 0 < 2 ↔ ¬ 2 ≤ 0 )
14 10 13 mpbi ¬ 2 ≤ 0
15 breq2 ( ( ♯ ‘ { 𝑈 } ) = 0 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 0 ) )
16 14 15 mtbiri ( ( ♯ ‘ { 𝑈 } ) = 0 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) )
17 1lt2 1 < 2
18 1re 1 ∈ ℝ
19 18 12 ltnlei ( 1 < 2 ↔ ¬ 2 ≤ 1 )
20 17 19 mpbi ¬ 2 ≤ 1
21 breq2 ( ( ♯ ‘ { 𝑈 } ) = 1 → ( 2 ≤ ( ♯ ‘ { 𝑈 } ) ↔ 2 ≤ 1 ) )
22 20 21 mtbiri ( ( ♯ ‘ { 𝑈 } ) = 1 → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) )
23 16 22 jaoi ( ( ( ♯ ‘ { 𝑈 } ) = 0 ∨ ( ♯ ‘ { 𝑈 } ) = 1 ) → ¬ 2 ≤ ( ♯ ‘ { 𝑈 } ) )
24 9 23 ax-mp ¬ 2 ≤ ( ♯ ‘ { 𝑈 } )
25 fveq2 ( ( 𝐼𝑥 ) = { 𝑈 } → ( ♯ ‘ ( 𝐼𝑥 ) ) = ( ♯ ‘ { 𝑈 } ) )
26 25 breq2d ( ( 𝐼𝑥 ) = { 𝑈 } → ( 2 ≤ ( ♯ ‘ ( 𝐼𝑥 ) ) ↔ 2 ≤ ( ♯ ‘ { 𝑈 } ) ) )
27 24 26 mtbiri ( ( 𝐼𝑥 ) = { 𝑈 } → ¬ 2 ≤ ( ♯ ‘ ( 𝐼𝑥 ) ) )
28 1 2 3 lfgredgge2 ( ( 𝐼 : 𝐴𝐸𝑥𝐴 ) → 2 ≤ ( ♯ ‘ ( 𝐼𝑥 ) ) )
29 27 28 nsyl3 ( ( 𝐼 : 𝐴𝐸𝑥𝐴 ) → ¬ ( 𝐼𝑥 ) = { 𝑈 } )
30 29 ex ( 𝐼 : 𝐴𝐸 → ( 𝑥𝐴 → ¬ ( 𝐼𝑥 ) = { 𝑈 } ) )
31 8 30 ralrimi ( 𝐼 : 𝐴𝐸 → ∀ 𝑥𝐴 ¬ ( 𝐼𝑥 ) = { 𝑈 } )
32 rabeq0 ( { 𝑥𝐴 ∣ ( 𝐼𝑥 ) = { 𝑈 } } = ∅ ↔ ∀ 𝑥𝐴 ¬ ( 𝐼𝑥 ) = { 𝑈 } )
33 31 32 sylibr ( 𝐼 : 𝐴𝐸 → { 𝑥𝐴 ∣ ( 𝐼𝑥 ) = { 𝑈 } } = ∅ )