Metamath Proof Explorer


Theorem lfgrnloop

Description: A loop-free graph has no loops. (Contributed by AV, 23-Feb-2021)

Ref Expression
Hypotheses lfuhgrnloopv.i I = iEdg G
lfuhgrnloopv.a A = dom I
lfuhgrnloopv.e E = x 𝒫 V | 2 x
Assertion lfgrnloop I : A E x A | I x = U =

Proof

Step Hyp Ref Expression
1 lfuhgrnloopv.i I = iEdg G
2 lfuhgrnloopv.a A = dom I
3 lfuhgrnloopv.e E = x 𝒫 V | 2 x
4 nfcv _ x I
5 nfcv _ x A
6 nfrab1 _ x x 𝒫 V | 2 x
7 3 6 nfcxfr _ x E
8 4 5 7 nff x I : A E
9 hashsn01 U = 0 U = 1
10 2pos 0 < 2
11 0re 0
12 2re 2
13 11 12 ltnlei 0 < 2 ¬ 2 0
14 10 13 mpbi ¬ 2 0
15 breq2 U = 0 2 U 2 0
16 14 15 mtbiri U = 0 ¬ 2 U
17 1lt2 1 < 2
18 1re 1
19 18 12 ltnlei 1 < 2 ¬ 2 1
20 17 19 mpbi ¬ 2 1
21 breq2 U = 1 2 U 2 1
22 20 21 mtbiri U = 1 ¬ 2 U
23 16 22 jaoi U = 0 U = 1 ¬ 2 U
24 9 23 ax-mp ¬ 2 U
25 fveq2 I x = U I x = U
26 25 breq2d I x = U 2 I x 2 U
27 24 26 mtbiri I x = U ¬ 2 I x
28 1 2 3 lfgredgge2 I : A E x A 2 I x
29 27 28 nsyl3 I : A E x A ¬ I x = U
30 29 ex I : A E x A ¬ I x = U
31 8 30 ralrimi I : A E x A ¬ I x = U
32 rabeq0 x A | I x = U = x A ¬ I x = U
33 31 32 sylibr I : A E x A | I x = U =