Metamath Proof Explorer
Description: The size of a singleton is either 0 or 1. (Contributed by AV, 23-Feb-2021)
|
|
Ref |
Expression |
|
Assertion |
hashsn01 |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hashsng |
|
| 2 |
1
|
olcd |
|
| 3 |
|
snprc |
|
| 4 |
3
|
biimpi |
|
| 5 |
4
|
fveq2d |
|
| 6 |
|
hash0 |
|
| 7 |
5 6
|
eqtrdi |
|
| 8 |
7
|
orcd |
|
| 9 |
2 8
|
pm2.61i |
|