| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> P e. ( Prime \ { 2 } ) ) | 
						
							| 2 |  | simp2 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> Q e. ( Prime \ { 2 } ) ) | 
						
							| 3 |  | simp3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> P =/= Q ) | 
						
							| 4 |  | eqid |  |-  ( ( P - 1 ) / 2 ) = ( ( P - 1 ) / 2 ) | 
						
							| 5 |  | eqid |  |-  ( ( Q - 1 ) / 2 ) = ( ( Q - 1 ) / 2 ) | 
						
							| 6 |  | eleq1w |  |-  ( x = z -> ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) <-> z e. ( 1 ... ( ( P - 1 ) / 2 ) ) ) ) | 
						
							| 7 |  | eleq1w |  |-  ( y = w -> ( y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) <-> w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) ) | 
						
							| 8 | 6 7 | bi2anan9 |  |-  ( ( x = z /\ y = w ) -> ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) <-> ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) ) ) | 
						
							| 9 |  | oveq1 |  |-  ( y = w -> ( y x. P ) = ( w x. P ) ) | 
						
							| 10 |  | oveq1 |  |-  ( x = z -> ( x x. Q ) = ( z x. Q ) ) | 
						
							| 11 | 9 10 | breqan12rd |  |-  ( ( x = z /\ y = w ) -> ( ( y x. P ) < ( x x. Q ) <-> ( w x. P ) < ( z x. Q ) ) ) | 
						
							| 12 | 8 11 | anbi12d |  |-  ( ( x = z /\ y = w ) -> ( ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( y x. P ) < ( x x. Q ) ) <-> ( ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( w x. P ) < ( z x. Q ) ) ) ) | 
						
							| 13 | 12 | cbvopabv |  |-  { <. x , y >. | ( ( x e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ y e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( y x. P ) < ( x x. Q ) ) } = { <. z , w >. | ( ( z e. ( 1 ... ( ( P - 1 ) / 2 ) ) /\ w e. ( 1 ... ( ( Q - 1 ) / 2 ) ) ) /\ ( w x. P ) < ( z x. Q ) ) } | 
						
							| 14 | 1 2 3 4 5 13 | lgsquadlem3 |  |-  ( ( P e. ( Prime \ { 2 } ) /\ Q e. ( Prime \ { 2 } ) /\ P =/= Q ) -> ( ( P /L Q ) x. ( Q /L P ) ) = ( -u 1 ^ ( ( ( P - 1 ) / 2 ) x. ( ( Q - 1 ) / 2 ) ) ) ) |