| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsquad2.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | lgsquad2.2 |  |-  ( ph -> -. 2 || M ) | 
						
							| 3 |  | lgsquad2.3 |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | lgsquad2.4 |  |-  ( ph -> -. 2 || N ) | 
						
							| 5 |  | lgsquad2.5 |  |-  ( ph -> ( M gcd N ) = 1 ) | 
						
							| 6 |  | lgsquad2lem1.a |  |-  ( ph -> A e. NN ) | 
						
							| 7 |  | lgsquad2lem1.b |  |-  ( ph -> B e. NN ) | 
						
							| 8 |  | lgsquad2lem1.m |  |-  ( ph -> ( A x. B ) = M ) | 
						
							| 9 |  | lgsquad2lem1.1 |  |-  ( ph -> ( ( A /L N ) x. ( N /L A ) ) = ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 10 |  | lgsquad2lem1.2 |  |-  ( ph -> ( ( B /L N ) x. ( N /L B ) ) = ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 11 | 6 | nnzd |  |-  ( ph -> A e. ZZ ) | 
						
							| 12 | 11 | zcnd |  |-  ( ph -> A e. CC ) | 
						
							| 13 |  | ax-1cn |  |-  1 e. CC | 
						
							| 14 |  | npcan |  |-  ( ( A e. CC /\ 1 e. CC ) -> ( ( A - 1 ) + 1 ) = A ) | 
						
							| 15 | 12 13 14 | sylancl |  |-  ( ph -> ( ( A - 1 ) + 1 ) = A ) | 
						
							| 16 | 7 | nnzd |  |-  ( ph -> B e. ZZ ) | 
						
							| 17 | 16 | zcnd |  |-  ( ph -> B e. CC ) | 
						
							| 18 |  | npcan |  |-  ( ( B e. CC /\ 1 e. CC ) -> ( ( B - 1 ) + 1 ) = B ) | 
						
							| 19 | 17 13 18 | sylancl |  |-  ( ph -> ( ( B - 1 ) + 1 ) = B ) | 
						
							| 20 | 15 19 | oveq12d |  |-  ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( A x. B ) ) | 
						
							| 21 |  | peano2zm |  |-  ( A e. ZZ -> ( A - 1 ) e. ZZ ) | 
						
							| 22 | 11 21 | syl |  |-  ( ph -> ( A - 1 ) e. ZZ ) | 
						
							| 23 | 22 | zcnd |  |-  ( ph -> ( A - 1 ) e. CC ) | 
						
							| 24 | 13 | a1i |  |-  ( ph -> 1 e. CC ) | 
						
							| 25 |  | peano2zm |  |-  ( B e. ZZ -> ( B - 1 ) e. ZZ ) | 
						
							| 26 | 16 25 | syl |  |-  ( ph -> ( B - 1 ) e. ZZ ) | 
						
							| 27 | 26 | zcnd |  |-  ( ph -> ( B - 1 ) e. CC ) | 
						
							| 28 | 23 24 27 24 | muladdd |  |-  ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) ) | 
						
							| 29 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 30 | 29 | a1i |  |-  ( ph -> ( 1 x. 1 ) = 1 ) | 
						
							| 31 | 30 | oveq2d |  |-  ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) ) | 
						
							| 32 | 23 | mulridd |  |-  ( ph -> ( ( A - 1 ) x. 1 ) = ( A - 1 ) ) | 
						
							| 33 | 27 | mulridd |  |-  ( ph -> ( ( B - 1 ) x. 1 ) = ( B - 1 ) ) | 
						
							| 34 | 32 33 | oveq12d |  |-  ( ph -> ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) = ( ( A - 1 ) + ( B - 1 ) ) ) | 
						
							| 35 | 31 34 | oveq12d |  |-  ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( 1 x. 1 ) ) + ( ( ( A - 1 ) x. 1 ) + ( ( B - 1 ) x. 1 ) ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 36 | 28 35 | eqtrd |  |-  ( ph -> ( ( ( A - 1 ) + 1 ) x. ( ( B - 1 ) + 1 ) ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 37 | 20 36 | eqtr3d |  |-  ( ph -> ( A x. B ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 38 | 8 37 | eqtr3d |  |-  ( ph -> M = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 39 | 38 | oveq1d |  |-  ( ph -> ( M - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) ) | 
						
							| 40 | 23 27 | mulcld |  |-  ( ph -> ( ( A - 1 ) x. ( B - 1 ) ) e. CC ) | 
						
							| 41 |  | addcl |  |-  ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) | 
						
							| 42 | 40 13 41 | sylancl |  |-  ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) e. CC ) | 
						
							| 43 | 23 27 | addcld |  |-  ( ph -> ( ( A - 1 ) + ( B - 1 ) ) e. CC ) | 
						
							| 44 | 42 43 24 | addsubd |  |-  ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) - 1 ) = ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 45 |  | pncan |  |-  ( ( ( ( A - 1 ) x. ( B - 1 ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) | 
						
							| 46 | 40 13 45 | sylancl |  |-  ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) = ( ( A - 1 ) x. ( B - 1 ) ) ) | 
						
							| 47 | 46 | oveq1d |  |-  ( ph -> ( ( ( ( ( A - 1 ) x. ( B - 1 ) ) + 1 ) - 1 ) + ( ( A - 1 ) + ( B - 1 ) ) ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 48 | 39 44 47 | 3eqtrd |  |-  ( ph -> ( M - 1 ) = ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) ) | 
						
							| 49 | 48 | oveq1d |  |-  ( ph -> ( ( M - 1 ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) ) | 
						
							| 50 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 51 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 52 | 51 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 53 | 40 43 50 52 | divdird |  |-  ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) + ( ( A - 1 ) + ( B - 1 ) ) ) / 2 ) = ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) ) | 
						
							| 54 | 23 27 50 52 | divassd |  |-  ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) | 
						
							| 55 | 23 50 52 | divcan2d |  |-  ( ph -> ( 2 x. ( ( A - 1 ) / 2 ) ) = ( A - 1 ) ) | 
						
							| 56 | 55 | oveq1d |  |-  ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( ( A - 1 ) x. ( ( B - 1 ) / 2 ) ) ) | 
						
							| 57 |  | dvdsmul1 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) | 
						
							| 58 | 11 16 57 | syl2anc |  |-  ( ph -> A || ( A x. B ) ) | 
						
							| 59 | 58 8 | breqtrd |  |-  ( ph -> A || M ) | 
						
							| 60 |  | 2z |  |-  2 e. ZZ | 
						
							| 61 | 1 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 62 |  | dvdstr |  |-  ( ( 2 e. ZZ /\ A e. ZZ /\ M e. ZZ ) -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) | 
						
							| 63 | 60 11 61 62 | mp3an2i |  |-  ( ph -> ( ( 2 || A /\ A || M ) -> 2 || M ) ) | 
						
							| 64 | 59 63 | mpan2d |  |-  ( ph -> ( 2 || A -> 2 || M ) ) | 
						
							| 65 | 2 64 | mtod |  |-  ( ph -> -. 2 || A ) | 
						
							| 66 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 67 |  | 2prm |  |-  2 e. Prime | 
						
							| 68 |  | nprmdvds1 |  |-  ( 2 e. Prime -> -. 2 || 1 ) | 
						
							| 69 | 67 68 | mp1i |  |-  ( ph -> -. 2 || 1 ) | 
						
							| 70 |  | omoe |  |-  ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( A - 1 ) ) | 
						
							| 71 | 11 65 66 69 70 | syl22anc |  |-  ( ph -> 2 || ( A - 1 ) ) | 
						
							| 72 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( A - 1 ) e. ZZ ) -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 73 | 60 52 22 72 | mp3an2i |  |-  ( ph -> ( 2 || ( A - 1 ) <-> ( ( A - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 74 | 71 73 | mpbid |  |-  ( ph -> ( ( A - 1 ) / 2 ) e. ZZ ) | 
						
							| 75 | 74 | zcnd |  |-  ( ph -> ( ( A - 1 ) / 2 ) e. CC ) | 
						
							| 76 |  | dvdsmul2 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A x. B ) ) | 
						
							| 77 | 11 16 76 | syl2anc |  |-  ( ph -> B || ( A x. B ) ) | 
						
							| 78 | 77 8 | breqtrd |  |-  ( ph -> B || M ) | 
						
							| 79 |  | dvdstr |  |-  ( ( 2 e. ZZ /\ B e. ZZ /\ M e. ZZ ) -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) | 
						
							| 80 | 60 16 61 79 | mp3an2i |  |-  ( ph -> ( ( 2 || B /\ B || M ) -> 2 || M ) ) | 
						
							| 81 | 78 80 | mpan2d |  |-  ( ph -> ( 2 || B -> 2 || M ) ) | 
						
							| 82 | 2 81 | mtod |  |-  ( ph -> -. 2 || B ) | 
						
							| 83 |  | omoe |  |-  ( ( ( B e. ZZ /\ -. 2 || B ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( B - 1 ) ) | 
						
							| 84 | 16 82 66 69 83 | syl22anc |  |-  ( ph -> 2 || ( B - 1 ) ) | 
						
							| 85 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( B - 1 ) e. ZZ ) -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 86 | 60 52 26 85 | mp3an2i |  |-  ( ph -> ( 2 || ( B - 1 ) <-> ( ( B - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 87 | 84 86 | mpbid |  |-  ( ph -> ( ( B - 1 ) / 2 ) e. ZZ ) | 
						
							| 88 | 87 | zcnd |  |-  ( ph -> ( ( B - 1 ) / 2 ) e. CC ) | 
						
							| 89 | 50 75 88 | mulassd |  |-  ( ph -> ( ( 2 x. ( ( A - 1 ) / 2 ) ) x. ( ( B - 1 ) / 2 ) ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) | 
						
							| 90 | 54 56 89 | 3eqtr2d |  |-  ( ph -> ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) = ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) ) | 
						
							| 91 | 23 27 50 52 | divdird |  |-  ( ph -> ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) = ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) | 
						
							| 92 | 90 91 | oveq12d |  |-  ( ph -> ( ( ( ( A - 1 ) x. ( B - 1 ) ) / 2 ) + ( ( ( A - 1 ) + ( B - 1 ) ) / 2 ) ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) | 
						
							| 93 | 49 53 92 | 3eqtrd |  |-  ( ph -> ( ( M - 1 ) / 2 ) = ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) ) | 
						
							| 94 | 93 | oveq1d |  |-  ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 95 | 60 | a1i |  |-  ( ph -> 2 e. ZZ ) | 
						
							| 96 | 74 87 | zmulcld |  |-  ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 97 | 95 96 | zmulcld |  |-  ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. ZZ ) | 
						
							| 98 | 97 | zcnd |  |-  ( ph -> ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) e. CC ) | 
						
							| 99 | 74 87 | zaddcld |  |-  ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 100 | 99 | zcnd |  |-  ( ph -> ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) e. CC ) | 
						
							| 101 | 3 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 102 |  | omoe |  |-  ( ( ( N e. ZZ /\ -. 2 || N ) /\ ( 1 e. ZZ /\ -. 2 || 1 ) ) -> 2 || ( N - 1 ) ) | 
						
							| 103 | 101 4 66 69 102 | syl22anc |  |-  ( ph -> 2 || ( N - 1 ) ) | 
						
							| 104 |  | peano2zm |  |-  ( N e. ZZ -> ( N - 1 ) e. ZZ ) | 
						
							| 105 | 101 104 | syl |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 106 |  | dvdsval2 |  |-  ( ( 2 e. ZZ /\ 2 =/= 0 /\ ( N - 1 ) e. ZZ ) -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 107 | 60 52 105 106 | mp3an2i |  |-  ( ph -> ( 2 || ( N - 1 ) <-> ( ( N - 1 ) / 2 ) e. ZZ ) ) | 
						
							| 108 | 103 107 | mpbid |  |-  ( ph -> ( ( N - 1 ) / 2 ) e. ZZ ) | 
						
							| 109 | 108 | zcnd |  |-  ( ph -> ( ( N - 1 ) / 2 ) e. CC ) | 
						
							| 110 | 98 100 109 | adddird |  |-  ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) + ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 111 | 96 | zcnd |  |-  ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) e. CC ) | 
						
							| 112 | 50 111 109 | mulassd |  |-  ( ph -> ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) = ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 113 | 112 | oveq1d |  |-  ( ph -> ( ( ( 2 x. ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 114 | 94 110 113 | 3eqtrd |  |-  ( ph -> ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 115 | 114 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 116 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 117 | 116 | a1i |  |-  ( ph -> -u 1 e. CC ) | 
						
							| 118 |  | neg1ne0 |  |-  -u 1 =/= 0 | 
						
							| 119 | 118 | a1i |  |-  ( ph -> -u 1 =/= 0 ) | 
						
							| 120 | 96 108 | zmulcld |  |-  ( ph -> ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 121 | 95 120 | zmulcld |  |-  ( ph -> ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ ) | 
						
							| 122 | 99 108 | zmulcld |  |-  ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 123 |  | expaddz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 124 | 117 119 121 122 123 | syl22anc |  |-  ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 125 |  | expmulz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( 2 e. ZZ /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 126 | 117 119 95 120 125 | syl22anc |  |-  ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 127 |  | neg1sqe1 |  |-  ( -u 1 ^ 2 ) = 1 | 
						
							| 128 | 127 | oveq1i |  |-  ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) | 
						
							| 129 |  | 1exp |  |-  ( ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) e. ZZ -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) | 
						
							| 130 | 120 129 | syl |  |-  ( ph -> ( 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) | 
						
							| 131 | 128 130 | eqtrid |  |-  ( ph -> ( ( -u 1 ^ 2 ) ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = 1 ) | 
						
							| 132 | 126 131 | eqtrd |  |-  ( ph -> ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = 1 ) | 
						
							| 133 | 132 | oveq1d |  |-  ( ph -> ( ( -u 1 ^ ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 134 | 124 133 | eqtrd |  |-  ( ph -> ( -u 1 ^ ( ( 2 x. ( ( ( ( A - 1 ) / 2 ) x. ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) + ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 135 | 117 119 122 | expclzd |  |-  ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) e. CC ) | 
						
							| 136 | 135 | mullidd |  |-  ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 137 | 75 88 109 | adddird |  |-  ( ph -> ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 138 | 137 | oveq2d |  |-  ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 139 | 136 138 | eqtrd |  |-  ( ph -> ( 1 x. ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) + ( ( B - 1 ) / 2 ) ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 140 | 115 134 139 | 3eqtrd |  |-  ( ph -> ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 141 | 9 10 | oveq12d |  |-  ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 142 | 74 108 | zmulcld |  |-  ( ph -> ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 143 | 87 108 | zmulcld |  |-  ( ph -> ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) | 
						
							| 144 |  | expaddz |  |-  ( ( ( -u 1 e. CC /\ -u 1 =/= 0 ) /\ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ /\ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) e. ZZ ) ) -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 145 | 117 119 142 143 144 | syl22anc |  |-  ( ph -> ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) = ( ( -u 1 ^ ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) x. ( -u 1 ^ ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 146 | 141 145 | eqtr4d |  |-  ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( -u 1 ^ ( ( ( ( A - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) + ( ( ( B - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 147 |  | lgscl |  |-  ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) e. ZZ ) | 
						
							| 148 | 11 101 147 | syl2anc |  |-  ( ph -> ( A /L N ) e. ZZ ) | 
						
							| 149 | 148 | zcnd |  |-  ( ph -> ( A /L N ) e. CC ) | 
						
							| 150 |  | lgscl |  |-  ( ( B e. ZZ /\ N e. ZZ ) -> ( B /L N ) e. ZZ ) | 
						
							| 151 | 16 101 150 | syl2anc |  |-  ( ph -> ( B /L N ) e. ZZ ) | 
						
							| 152 | 151 | zcnd |  |-  ( ph -> ( B /L N ) e. CC ) | 
						
							| 153 |  | lgscl |  |-  ( ( N e. ZZ /\ A e. ZZ ) -> ( N /L A ) e. ZZ ) | 
						
							| 154 | 101 11 153 | syl2anc |  |-  ( ph -> ( N /L A ) e. ZZ ) | 
						
							| 155 | 154 | zcnd |  |-  ( ph -> ( N /L A ) e. CC ) | 
						
							| 156 |  | lgscl |  |-  ( ( N e. ZZ /\ B e. ZZ ) -> ( N /L B ) e. ZZ ) | 
						
							| 157 | 101 16 156 | syl2anc |  |-  ( ph -> ( N /L B ) e. ZZ ) | 
						
							| 158 | 157 | zcnd |  |-  ( ph -> ( N /L B ) e. CC ) | 
						
							| 159 | 149 152 155 158 | mul4d |  |-  ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) ) | 
						
							| 160 | 6 | nnne0d |  |-  ( ph -> A =/= 0 ) | 
						
							| 161 | 7 | nnne0d |  |-  ( ph -> B =/= 0 ) | 
						
							| 162 |  | lgsdir |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) | 
						
							| 163 | 11 16 101 160 161 162 | syl32anc |  |-  ( ph -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) | 
						
							| 164 | 8 | oveq1d |  |-  ( ph -> ( ( A x. B ) /L N ) = ( M /L N ) ) | 
						
							| 165 | 163 164 | eqtr3d |  |-  ( ph -> ( ( A /L N ) x. ( B /L N ) ) = ( M /L N ) ) | 
						
							| 166 |  | lgsdi |  |-  ( ( ( N e. ZZ /\ A e. ZZ /\ B e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) | 
						
							| 167 | 101 11 16 160 161 166 | syl32anc |  |-  ( ph -> ( N /L ( A x. B ) ) = ( ( N /L A ) x. ( N /L B ) ) ) | 
						
							| 168 | 8 | oveq2d |  |-  ( ph -> ( N /L ( A x. B ) ) = ( N /L M ) ) | 
						
							| 169 | 167 168 | eqtr3d |  |-  ( ph -> ( ( N /L A ) x. ( N /L B ) ) = ( N /L M ) ) | 
						
							| 170 | 165 169 | oveq12d |  |-  ( ph -> ( ( ( A /L N ) x. ( B /L N ) ) x. ( ( N /L A ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) | 
						
							| 171 | 159 170 | eqtr3d |  |-  ( ph -> ( ( ( A /L N ) x. ( N /L A ) ) x. ( ( B /L N ) x. ( N /L B ) ) ) = ( ( M /L N ) x. ( N /L M ) ) ) | 
						
							| 172 | 140 146 171 | 3eqtr2rd |  |-  ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |