| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odd2np1 |
|- ( A e. ZZ -> ( -. 2 || A <-> E. a e. ZZ ( ( 2 x. a ) + 1 ) = A ) ) |
| 2 |
|
odd2np1 |
|- ( B e. ZZ -> ( -. 2 || B <-> E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
| 3 |
1 2
|
bi2anan9 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) ) |
| 4 |
|
reeanv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) <-> ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) ) |
| 5 |
|
2z |
|- 2 e. ZZ |
| 6 |
|
zsubcl |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( a - b ) e. ZZ ) |
| 7 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ ( a - b ) e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
| 8 |
5 6 7
|
sylancr |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( 2 x. ( a - b ) ) ) |
| 9 |
|
zcn |
|- ( a e. ZZ -> a e. CC ) |
| 10 |
|
zcn |
|- ( b e. ZZ -> b e. CC ) |
| 11 |
|
2cn |
|- 2 e. CC |
| 12 |
|
mulcl |
|- ( ( 2 e. CC /\ a e. CC ) -> ( 2 x. a ) e. CC ) |
| 13 |
11 12
|
mpan |
|- ( a e. CC -> ( 2 x. a ) e. CC ) |
| 14 |
|
mulcl |
|- ( ( 2 e. CC /\ b e. CC ) -> ( 2 x. b ) e. CC ) |
| 15 |
11 14
|
mpan |
|- ( b e. CC -> ( 2 x. b ) e. CC ) |
| 16 |
|
ax-1cn |
|- 1 e. CC |
| 17 |
|
pnpcan2 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC /\ 1 e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 18 |
16 17
|
mp3an3 |
|- ( ( ( 2 x. a ) e. CC /\ ( 2 x. b ) e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 19 |
13 15 18
|
syl2an |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 20 |
|
subdi |
|- ( ( 2 e. CC /\ a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 21 |
11 20
|
mp3an1 |
|- ( ( a e. CC /\ b e. CC ) -> ( 2 x. ( a - b ) ) = ( ( 2 x. a ) - ( 2 x. b ) ) ) |
| 22 |
19 21
|
eqtr4d |
|- ( ( a e. CC /\ b e. CC ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
| 23 |
9 10 22
|
syl2an |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( 2 x. ( a - b ) ) ) |
| 24 |
8 23
|
breqtrrd |
|- ( ( a e. ZZ /\ b e. ZZ ) -> 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) ) |
| 25 |
|
oveq12 |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) = ( A - B ) ) |
| 26 |
25
|
breq2d |
|- ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> ( 2 || ( ( ( 2 x. a ) + 1 ) - ( ( 2 x. b ) + 1 ) ) <-> 2 || ( A - B ) ) ) |
| 27 |
24 26
|
syl5ibcom |
|- ( ( a e. ZZ /\ b e. ZZ ) -> ( ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) ) |
| 28 |
27
|
rexlimivv |
|- ( E. a e. ZZ E. b e. ZZ ( ( ( 2 x. a ) + 1 ) = A /\ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
| 29 |
4 28
|
sylbir |
|- ( ( E. a e. ZZ ( ( 2 x. a ) + 1 ) = A /\ E. b e. ZZ ( ( 2 x. b ) + 1 ) = B ) -> 2 || ( A - B ) ) |
| 30 |
3 29
|
biimtrdi |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( -. 2 || A /\ -. 2 || B ) -> 2 || ( A - B ) ) ) |
| 31 |
30
|
imp |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( -. 2 || A /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |
| 32 |
31
|
an4s |
|- ( ( ( A e. ZZ /\ -. 2 || A ) /\ ( B e. ZZ /\ -. 2 || B ) ) -> 2 || ( A - B ) ) |