| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsquad2.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
lgsquad2.2 |
|- ( ph -> -. 2 || M ) |
| 3 |
|
lgsquad2.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
lgsquad2.4 |
|- ( ph -> -. 2 || N ) |
| 5 |
|
lgsquad2.5 |
|- ( ph -> ( M gcd N ) = 1 ) |
| 6 |
|
lgsquad2lem2.f |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 7 |
|
lgsquad2lem2.s |
|- ( ps <-> A. x e. ( 1 ... k ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 8 |
|
2nn |
|- 2 e. NN |
| 9 |
8
|
a1i |
|- ( ph -> 2 e. NN ) |
| 10 |
1
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 11 |
|
2z |
|- 2 e. ZZ |
| 12 |
|
gcdcom |
|- ( ( M e. ZZ /\ 2 e. ZZ ) -> ( M gcd 2 ) = ( 2 gcd M ) ) |
| 13 |
10 11 12
|
sylancl |
|- ( ph -> ( M gcd 2 ) = ( 2 gcd M ) ) |
| 14 |
|
2prm |
|- 2 e. Prime |
| 15 |
|
coprm |
|- ( ( 2 e. Prime /\ M e. ZZ ) -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) |
| 16 |
14 10 15
|
sylancr |
|- ( ph -> ( -. 2 || M <-> ( 2 gcd M ) = 1 ) ) |
| 17 |
2 16
|
mpbid |
|- ( ph -> ( 2 gcd M ) = 1 ) |
| 18 |
13 17
|
eqtrd |
|- ( ph -> ( M gcd 2 ) = 1 ) |
| 19 |
|
rpmulgcd |
|- ( ( ( M e. NN /\ 2 e. NN /\ N e. NN ) /\ ( M gcd 2 ) = 1 ) -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) |
| 20 |
1 9 3 18 19
|
syl31anc |
|- ( ph -> ( M gcd ( 2 x. N ) ) = ( M gcd N ) ) |
| 21 |
20 5
|
eqtrd |
|- ( ph -> ( M gcd ( 2 x. N ) ) = 1 ) |
| 22 |
|
oveq1 |
|- ( m = 1 -> ( m /L N ) = ( 1 /L N ) ) |
| 23 |
|
oveq2 |
|- ( m = 1 -> ( N /L m ) = ( N /L 1 ) ) |
| 24 |
22 23
|
oveq12d |
|- ( m = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( ( 1 /L N ) x. ( N /L 1 ) ) ) |
| 25 |
|
oveq1 |
|- ( m = 1 -> ( m - 1 ) = ( 1 - 1 ) ) |
| 26 |
|
1m1e0 |
|- ( 1 - 1 ) = 0 |
| 27 |
25 26
|
eqtrdi |
|- ( m = 1 -> ( m - 1 ) = 0 ) |
| 28 |
27
|
oveq1d |
|- ( m = 1 -> ( ( m - 1 ) / 2 ) = ( 0 / 2 ) ) |
| 29 |
|
2cn |
|- 2 e. CC |
| 30 |
|
2ne0 |
|- 2 =/= 0 |
| 31 |
29 30
|
div0i |
|- ( 0 / 2 ) = 0 |
| 32 |
28 31
|
eqtrdi |
|- ( m = 1 -> ( ( m - 1 ) / 2 ) = 0 ) |
| 33 |
32
|
oveq1d |
|- ( m = 1 -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( 0 x. ( ( N - 1 ) / 2 ) ) ) |
| 34 |
33
|
oveq2d |
|- ( m = 1 -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) |
| 35 |
24 34
|
eqeq12d |
|- ( m = 1 -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 36 |
35
|
imbi2d |
|- ( m = 1 -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 37 |
36
|
imbi2d |
|- ( m = 1 -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 38 |
|
oveq1 |
|- ( m = x -> ( m gcd ( 2 x. N ) ) = ( x gcd ( 2 x. N ) ) ) |
| 39 |
38
|
eqeq1d |
|- ( m = x -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( x gcd ( 2 x. N ) ) = 1 ) ) |
| 40 |
|
oveq1 |
|- ( m = x -> ( m /L N ) = ( x /L N ) ) |
| 41 |
|
oveq2 |
|- ( m = x -> ( N /L m ) = ( N /L x ) ) |
| 42 |
40 41
|
oveq12d |
|- ( m = x -> ( ( m /L N ) x. ( N /L m ) ) = ( ( x /L N ) x. ( N /L x ) ) ) |
| 43 |
|
oveq1 |
|- ( m = x -> ( m - 1 ) = ( x - 1 ) ) |
| 44 |
43
|
oveq1d |
|- ( m = x -> ( ( m - 1 ) / 2 ) = ( ( x - 1 ) / 2 ) ) |
| 45 |
44
|
oveq1d |
|- ( m = x -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
| 46 |
45
|
oveq2d |
|- ( m = x -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 47 |
42 46
|
eqeq12d |
|- ( m = x -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 48 |
39 47
|
imbi12d |
|- ( m = x -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 49 |
48
|
imbi2d |
|- ( m = x -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 50 |
|
oveq1 |
|- ( m = y -> ( m gcd ( 2 x. N ) ) = ( y gcd ( 2 x. N ) ) ) |
| 51 |
50
|
eqeq1d |
|- ( m = y -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( y gcd ( 2 x. N ) ) = 1 ) ) |
| 52 |
|
oveq1 |
|- ( m = y -> ( m /L N ) = ( y /L N ) ) |
| 53 |
|
oveq2 |
|- ( m = y -> ( N /L m ) = ( N /L y ) ) |
| 54 |
52 53
|
oveq12d |
|- ( m = y -> ( ( m /L N ) x. ( N /L m ) ) = ( ( y /L N ) x. ( N /L y ) ) ) |
| 55 |
|
oveq1 |
|- ( m = y -> ( m - 1 ) = ( y - 1 ) ) |
| 56 |
55
|
oveq1d |
|- ( m = y -> ( ( m - 1 ) / 2 ) = ( ( y - 1 ) / 2 ) ) |
| 57 |
56
|
oveq1d |
|- ( m = y -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
| 58 |
57
|
oveq2d |
|- ( m = y -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 59 |
54 58
|
eqeq12d |
|- ( m = y -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 60 |
51 59
|
imbi12d |
|- ( m = y -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 61 |
60
|
imbi2d |
|- ( m = y -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 62 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m gcd ( 2 x. N ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) |
| 63 |
62
|
eqeq1d |
|- ( m = ( x x. y ) -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) ) |
| 64 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m /L N ) = ( ( x x. y ) /L N ) ) |
| 65 |
|
oveq2 |
|- ( m = ( x x. y ) -> ( N /L m ) = ( N /L ( x x. y ) ) ) |
| 66 |
64 65
|
oveq12d |
|- ( m = ( x x. y ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) ) |
| 67 |
|
oveq1 |
|- ( m = ( x x. y ) -> ( m - 1 ) = ( ( x x. y ) - 1 ) ) |
| 68 |
67
|
oveq1d |
|- ( m = ( x x. y ) -> ( ( m - 1 ) / 2 ) = ( ( ( x x. y ) - 1 ) / 2 ) ) |
| 69 |
68
|
oveq1d |
|- ( m = ( x x. y ) -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
| 70 |
69
|
oveq2d |
|- ( m = ( x x. y ) -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 71 |
66 70
|
eqeq12d |
|- ( m = ( x x. y ) -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 72 |
63 71
|
imbi12d |
|- ( m = ( x x. y ) -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 73 |
72
|
imbi2d |
|- ( m = ( x x. y ) -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 74 |
|
oveq1 |
|- ( m = M -> ( m gcd ( 2 x. N ) ) = ( M gcd ( 2 x. N ) ) ) |
| 75 |
74
|
eqeq1d |
|- ( m = M -> ( ( m gcd ( 2 x. N ) ) = 1 <-> ( M gcd ( 2 x. N ) ) = 1 ) ) |
| 76 |
|
oveq1 |
|- ( m = M -> ( m /L N ) = ( M /L N ) ) |
| 77 |
|
oveq2 |
|- ( m = M -> ( N /L m ) = ( N /L M ) ) |
| 78 |
76 77
|
oveq12d |
|- ( m = M -> ( ( m /L N ) x. ( N /L m ) ) = ( ( M /L N ) x. ( N /L M ) ) ) |
| 79 |
|
oveq1 |
|- ( m = M -> ( m - 1 ) = ( M - 1 ) ) |
| 80 |
79
|
oveq1d |
|- ( m = M -> ( ( m - 1 ) / 2 ) = ( ( M - 1 ) / 2 ) ) |
| 81 |
80
|
oveq1d |
|- ( m = M -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) |
| 82 |
81
|
oveq2d |
|- ( m = M -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 83 |
78 82
|
eqeq12d |
|- ( m = M -> ( ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) <-> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 84 |
75 83
|
imbi12d |
|- ( m = M -> ( ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 85 |
84
|
imbi2d |
|- ( m = M -> ( ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) <-> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 86 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 87 |
|
neg1cn |
|- -u 1 e. CC |
| 88 |
|
exp0 |
|- ( -u 1 e. CC -> ( -u 1 ^ 0 ) = 1 ) |
| 89 |
87 88
|
ax-mp |
|- ( -u 1 ^ 0 ) = 1 |
| 90 |
86 89
|
eqtr4i |
|- ( 1 x. 1 ) = ( -u 1 ^ 0 ) |
| 91 |
|
sq1 |
|- ( 1 ^ 2 ) = 1 |
| 92 |
91
|
oveq1i |
|- ( ( 1 ^ 2 ) /L N ) = ( 1 /L N ) |
| 93 |
|
1z |
|- 1 e. ZZ |
| 94 |
|
ax-1ne0 |
|- 1 =/= 0 |
| 95 |
93 94
|
pm3.2i |
|- ( 1 e. ZZ /\ 1 =/= 0 ) |
| 96 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 97 |
|
1gcd |
|- ( N e. ZZ -> ( 1 gcd N ) = 1 ) |
| 98 |
96 97
|
syl |
|- ( ph -> ( 1 gcd N ) = 1 ) |
| 99 |
|
lgssq |
|- ( ( ( 1 e. ZZ /\ 1 =/= 0 ) /\ N e. ZZ /\ ( 1 gcd N ) = 1 ) -> ( ( 1 ^ 2 ) /L N ) = 1 ) |
| 100 |
95 96 98 99
|
mp3an2i |
|- ( ph -> ( ( 1 ^ 2 ) /L N ) = 1 ) |
| 101 |
92 100
|
eqtr3id |
|- ( ph -> ( 1 /L N ) = 1 ) |
| 102 |
91
|
oveq2i |
|- ( N /L ( 1 ^ 2 ) ) = ( N /L 1 ) |
| 103 |
|
1nn |
|- 1 e. NN |
| 104 |
103
|
a1i |
|- ( ph -> 1 e. NN ) |
| 105 |
|
gcd1 |
|- ( N e. ZZ -> ( N gcd 1 ) = 1 ) |
| 106 |
96 105
|
syl |
|- ( ph -> ( N gcd 1 ) = 1 ) |
| 107 |
|
lgssq2 |
|- ( ( N e. ZZ /\ 1 e. NN /\ ( N gcd 1 ) = 1 ) -> ( N /L ( 1 ^ 2 ) ) = 1 ) |
| 108 |
96 104 106 107
|
syl3anc |
|- ( ph -> ( N /L ( 1 ^ 2 ) ) = 1 ) |
| 109 |
102 108
|
eqtr3id |
|- ( ph -> ( N /L 1 ) = 1 ) |
| 110 |
101 109
|
oveq12d |
|- ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( 1 x. 1 ) ) |
| 111 |
|
nnm1nn0 |
|- ( N e. NN -> ( N - 1 ) e. NN0 ) |
| 112 |
3 111
|
syl |
|- ( ph -> ( N - 1 ) e. NN0 ) |
| 113 |
112
|
nn0cnd |
|- ( ph -> ( N - 1 ) e. CC ) |
| 114 |
113
|
halfcld |
|- ( ph -> ( ( N - 1 ) / 2 ) e. CC ) |
| 115 |
114
|
mul02d |
|- ( ph -> ( 0 x. ( ( N - 1 ) / 2 ) ) = 0 ) |
| 116 |
115
|
oveq2d |
|- ( ph -> ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ 0 ) ) |
| 117 |
90 110 116
|
3eqtr4a |
|- ( ph -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) |
| 118 |
117
|
a1d |
|- ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( 1 /L N ) x. ( N /L 1 ) ) = ( -u 1 ^ ( 0 x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 119 |
|
simprl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. Prime ) |
| 120 |
|
prmz |
|- ( m e. Prime -> m e. ZZ ) |
| 121 |
120
|
ad2antrl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ZZ ) |
| 122 |
11
|
a1i |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. ZZ ) |
| 123 |
3
|
adantr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. NN ) |
| 124 |
123
|
nnzd |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> N e. ZZ ) |
| 125 |
|
zmulcl |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> ( 2 x. N ) e. ZZ ) |
| 126 |
11 124 125
|
sylancr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( 2 x. N ) e. ZZ ) |
| 127 |
|
simprr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = 1 ) |
| 128 |
|
dvdsmul1 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> 2 || ( 2 x. N ) ) |
| 129 |
11 124 128
|
sylancr |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 || ( 2 x. N ) ) |
| 130 |
|
rpdvds |
|- ( ( ( m e. ZZ /\ 2 e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( m gcd ( 2 x. N ) ) = 1 /\ 2 || ( 2 x. N ) ) ) -> ( m gcd 2 ) = 1 ) |
| 131 |
121 122 126 127 129 130
|
syl32anc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd 2 ) = 1 ) |
| 132 |
|
prmrp |
|- ( ( m e. Prime /\ 2 e. Prime ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) |
| 133 |
119 14 132
|
sylancl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m gcd 2 ) = 1 <-> m =/= 2 ) ) |
| 134 |
131 133
|
mpbid |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m =/= 2 ) |
| 135 |
|
eldifsn |
|- ( m e. ( Prime \ { 2 } ) <-> ( m e. Prime /\ m =/= 2 ) ) |
| 136 |
119 134 135
|
sylanbrc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) |
| 137 |
|
prmnn |
|- ( m e. Prime -> m e. NN ) |
| 138 |
137
|
ad2antrl |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> m e. NN ) |
| 139 |
8
|
a1i |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> 2 e. NN ) |
| 140 |
|
rpmulgcd |
|- ( ( ( m e. NN /\ 2 e. NN /\ N e. NN ) /\ ( m gcd 2 ) = 1 ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) |
| 141 |
138 139 123 131 140
|
syl31anc |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd ( 2 x. N ) ) = ( m gcd N ) ) |
| 142 |
141 127
|
eqtr3d |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m gcd N ) = 1 ) |
| 143 |
136 142
|
jca |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) |
| 144 |
143 6
|
syldan |
|- ( ( ph /\ ( m e. Prime /\ ( m gcd ( 2 x. N ) ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 145 |
144
|
exp32 |
|- ( ph -> ( m e. Prime -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 146 |
145
|
com12 |
|- ( m e. Prime -> ( ph -> ( ( m gcd ( 2 x. N ) ) = 1 -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 147 |
|
jcab |
|- ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) <-> ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 148 |
|
simplrl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. ( ZZ>= ` 2 ) ) |
| 149 |
|
eluz2nn |
|- ( x e. ( ZZ>= ` 2 ) -> x e. NN ) |
| 150 |
148 149
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> x e. NN ) |
| 151 |
|
simplrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. ( ZZ>= ` 2 ) ) |
| 152 |
|
eluz2nn |
|- ( y e. ( ZZ>= ` 2 ) -> y e. NN ) |
| 153 |
151 152
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> y e. NN ) |
| 154 |
150 153
|
nnmulcld |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) e. NN ) |
| 155 |
|
n2dvds1 |
|- -. 2 || 1 |
| 156 |
96
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N e. ZZ ) |
| 157 |
11 156 128
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> 2 || ( 2 x. N ) ) |
| 158 |
|
eluzelz |
|- ( x e. ( ZZ>= ` 2 ) -> x e. ZZ ) |
| 159 |
|
eluzelz |
|- ( y e. ( ZZ>= ` 2 ) -> y e. ZZ ) |
| 160 |
158 159
|
anim12i |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( x e. ZZ /\ y e. ZZ ) ) |
| 161 |
160
|
ad2antlr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x e. ZZ /\ y e. ZZ ) ) |
| 162 |
|
zmulcl |
|- ( ( x e. ZZ /\ y e. ZZ ) -> ( x x. y ) e. ZZ ) |
| 163 |
161 162
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x x. y ) e. ZZ ) |
| 164 |
11 156 125
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 x. N ) e. ZZ ) |
| 165 |
|
dvdsgcd |
|- ( ( 2 e. ZZ /\ ( x x. y ) e. ZZ /\ ( 2 x. N ) e. ZZ ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
| 166 |
11 163 164 165
|
mp3an2i |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 || ( x x. y ) /\ 2 || ( 2 x. N ) ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
| 167 |
157 166
|
mpan2d |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || ( ( x x. y ) gcd ( 2 x. N ) ) ) ) |
| 168 |
|
simpr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) |
| 169 |
168
|
breq2d |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( ( x x. y ) gcd ( 2 x. N ) ) <-> 2 || 1 ) ) |
| 170 |
167 169
|
sylibd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( 2 || ( x x. y ) -> 2 || 1 ) ) |
| 171 |
155 170
|
mtoi |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> -. 2 || ( x x. y ) ) |
| 172 |
171
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || ( x x. y ) ) |
| 173 |
3
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> N e. NN ) |
| 174 |
4
|
ad2antrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> -. 2 || N ) |
| 175 |
|
dvdsmul2 |
|- ( ( 2 e. ZZ /\ N e. ZZ ) -> N || ( 2 x. N ) ) |
| 176 |
11 156 175
|
sylancr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> N || ( 2 x. N ) ) |
| 177 |
|
rpdvds |
|- ( ( ( ( x x. y ) e. ZZ /\ N e. ZZ /\ ( 2 x. N ) e. ZZ ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ N || ( 2 x. N ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) |
| 178 |
163 156 164 168 176 177
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( x x. y ) gcd N ) = 1 ) |
| 179 |
178
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x x. y ) gcd N ) = 1 ) |
| 180 |
|
eqidd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x x. y ) = ( x x. y ) ) |
| 181 |
161
|
simpld |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x e. ZZ ) |
| 182 |
181 164
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd x ) ) |
| 183 |
164 163
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = ( ( x x. y ) gcd ( 2 x. N ) ) ) |
| 184 |
183 168
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd ( x x. y ) ) = 1 ) |
| 185 |
|
dvdsmul1 |
|- ( ( x e. ZZ /\ y e. ZZ ) -> x || ( x x. y ) ) |
| 186 |
161 185
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> x || ( x x. y ) ) |
| 187 |
|
rpdvds |
|- ( ( ( ( 2 x. N ) e. ZZ /\ x e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ x || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd x ) = 1 ) |
| 188 |
164 181 163 184 186 187
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd x ) = 1 ) |
| 189 |
182 188
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( x gcd ( 2 x. N ) ) = 1 ) |
| 190 |
189
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( x gcd ( 2 x. N ) ) = 1 ) |
| 191 |
|
simprrl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 192 |
190 191
|
mpd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 193 |
161
|
simprd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y e. ZZ ) |
| 194 |
193 164
|
gcdcomd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = ( ( 2 x. N ) gcd y ) ) |
| 195 |
|
dvdsmul2 |
|- ( ( x e. ZZ /\ y e. ZZ ) -> y || ( x x. y ) ) |
| 196 |
161 195
|
syl |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> y || ( x x. y ) ) |
| 197 |
|
rpdvds |
|- ( ( ( ( 2 x. N ) e. ZZ /\ y e. ZZ /\ ( x x. y ) e. ZZ ) /\ ( ( ( 2 x. N ) gcd ( x x. y ) ) = 1 /\ y || ( x x. y ) ) ) -> ( ( 2 x. N ) gcd y ) = 1 ) |
| 198 |
164 193 163 184 196 197
|
syl32anc |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( ( 2 x. N ) gcd y ) = 1 ) |
| 199 |
194 198
|
eqtrd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( x x. y ) gcd ( 2 x. N ) ) = 1 ) -> ( y gcd ( 2 x. N ) ) = 1 ) |
| 200 |
199
|
adantrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( y gcd ( 2 x. N ) ) = 1 ) |
| 201 |
|
simprrr |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 202 |
200 201
|
mpd |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 203 |
154 172 173 174 179 150 153 180 192 202
|
lgsquad2lem1 |
|- ( ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) /\ ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 /\ ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 204 |
203
|
exp32 |
|- ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 205 |
204
|
com23 |
|- ( ( ph /\ ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) ) -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 206 |
205
|
expcom |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ph -> ( ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 207 |
206
|
a2d |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ph -> ( ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) /\ ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 208 |
147 207
|
biimtrrid |
|- ( ( x e. ( ZZ>= ` 2 ) /\ y e. ( ZZ>= ` 2 ) ) -> ( ( ( ph -> ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) /\ ( ph -> ( ( y gcd ( 2 x. N ) ) = 1 -> ( ( y /L N ) x. ( N /L y ) ) = ( -u 1 ^ ( ( ( y - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) -> ( ph -> ( ( ( x x. y ) gcd ( 2 x. N ) ) = 1 -> ( ( ( x x. y ) /L N ) x. ( N /L ( x x. y ) ) ) = ( -u 1 ^ ( ( ( ( x x. y ) - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) ) |
| 209 |
37 49 61 73 85 118 146 208
|
prmind |
|- ( M e. NN -> ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) ) |
| 210 |
1 209
|
mpcom |
|- ( ph -> ( ( M gcd ( 2 x. N ) ) = 1 -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 211 |
21 210
|
mpd |
|- ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |