| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsquad2.1 |
|- ( ph -> M e. NN ) |
| 2 |
|
lgsquad2.2 |
|- ( ph -> -. 2 || M ) |
| 3 |
|
lgsquad2.3 |
|- ( ph -> N e. NN ) |
| 4 |
|
lgsquad2.4 |
|- ( ph -> -. 2 || N ) |
| 5 |
|
lgsquad2.5 |
|- ( ph -> ( M gcd N ) = 1 ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. NN ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 || N ) |
| 8 |
|
simprl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) |
| 9 |
|
eldifi |
|- ( m e. ( Prime \ { 2 } ) -> m e. Prime ) |
| 10 |
8 9
|
syl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. Prime ) |
| 11 |
|
prmnn |
|- ( m e. Prime -> m e. NN ) |
| 12 |
10 11
|
syl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. NN ) |
| 13 |
|
eldifsni |
|- ( m e. ( Prime \ { 2 } ) -> m =/= 2 ) |
| 14 |
8 13
|
syl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m =/= 2 ) |
| 15 |
14
|
necomd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> 2 =/= m ) |
| 16 |
15
|
neneqd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 = m ) |
| 17 |
|
2z |
|- 2 e. ZZ |
| 18 |
|
uzid |
|- ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) |
| 19 |
17 18
|
ax-mp |
|- 2 e. ( ZZ>= ` 2 ) |
| 20 |
|
dvdsprm |
|- ( ( 2 e. ( ZZ>= ` 2 ) /\ m e. Prime ) -> ( 2 || m <-> 2 = m ) ) |
| 21 |
19 10 20
|
sylancr |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( 2 || m <-> 2 = m ) ) |
| 22 |
16 21
|
mtbird |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 || m ) |
| 23 |
6
|
nnzd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. ZZ ) |
| 24 |
12
|
nnzd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. ZZ ) |
| 25 |
23 24
|
gcdcomd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N gcd m ) = ( m gcd N ) ) |
| 26 |
|
simprr |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m gcd N ) = 1 ) |
| 27 |
25 26
|
eqtrd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N gcd m ) = 1 ) |
| 28 |
|
simprl |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> n e. ( Prime \ { 2 } ) ) |
| 29 |
8
|
adantr |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) |
| 30 |
|
eldifi |
|- ( n e. ( Prime \ { 2 } ) -> n e. Prime ) |
| 31 |
|
prmrp |
|- ( ( n e. Prime /\ m e. Prime ) -> ( ( n gcd m ) = 1 <-> n =/= m ) ) |
| 32 |
30 10 31
|
syl2anr |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ n e. ( Prime \ { 2 } ) ) -> ( ( n gcd m ) = 1 <-> n =/= m ) ) |
| 33 |
32
|
biimpd |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ n e. ( Prime \ { 2 } ) ) -> ( ( n gcd m ) = 1 -> n =/= m ) ) |
| 34 |
33
|
impr |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> n =/= m ) |
| 35 |
|
lgsquad |
|- ( ( n e. ( Prime \ { 2 } ) /\ m e. ( Prime \ { 2 } ) /\ n =/= m ) -> ( ( n /L m ) x. ( m /L n ) ) = ( -u 1 ^ ( ( ( n - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) |
| 36 |
28 29 34 35
|
syl3anc |
|- ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> ( ( n /L m ) x. ( m /L n ) ) = ( -u 1 ^ ( ( ( n - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) |
| 37 |
|
biid |
|- ( A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. m ) ) = 1 -> ( ( x /L m ) x. ( m /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) <-> A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. m ) ) = 1 -> ( ( x /L m ) x. ( m /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) ) |
| 38 |
6 7 12 22 27 36 37
|
lgsquad2lem2 |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( N /L m ) x. ( m /L N ) ) = ( -u 1 ^ ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) |
| 39 |
|
lgscl |
|- ( ( m e. ZZ /\ N e. ZZ ) -> ( m /L N ) e. ZZ ) |
| 40 |
24 23 39
|
syl2anc |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m /L N ) e. ZZ ) |
| 41 |
|
lgscl |
|- ( ( N e. ZZ /\ m e. ZZ ) -> ( N /L m ) e. ZZ ) |
| 42 |
23 24 41
|
syl2anc |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N /L m ) e. ZZ ) |
| 43 |
|
zcn |
|- ( ( m /L N ) e. ZZ -> ( m /L N ) e. CC ) |
| 44 |
|
zcn |
|- ( ( N /L m ) e. ZZ -> ( N /L m ) e. CC ) |
| 45 |
|
mulcom |
|- ( ( ( m /L N ) e. CC /\ ( N /L m ) e. CC ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) |
| 46 |
43 44 45
|
syl2an |
|- ( ( ( m /L N ) e. ZZ /\ ( N /L m ) e. ZZ ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) |
| 47 |
40 42 46
|
syl2anc |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) |
| 48 |
12
|
nncnd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. CC ) |
| 49 |
|
ax-1cn |
|- 1 e. CC |
| 50 |
|
subcl |
|- ( ( m e. CC /\ 1 e. CC ) -> ( m - 1 ) e. CC ) |
| 51 |
48 49 50
|
sylancl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m - 1 ) e. CC ) |
| 52 |
51
|
halfcld |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m - 1 ) / 2 ) e. CC ) |
| 53 |
6
|
nncnd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. CC ) |
| 54 |
|
subcl |
|- ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) |
| 55 |
53 49 54
|
sylancl |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N - 1 ) e. CC ) |
| 56 |
55
|
halfcld |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( N - 1 ) / 2 ) e. CC ) |
| 57 |
52 56
|
mulcomd |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) |
| 58 |
57
|
oveq2d |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) |
| 59 |
38 47 58
|
3eqtr4d |
|- ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |
| 60 |
|
biid |
|- ( A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) |
| 61 |
1 2 3 4 5 59 60
|
lgsquad2lem2 |
|- ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |