| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsquad2.1 |  |-  ( ph -> M e. NN ) | 
						
							| 2 |  | lgsquad2.2 |  |-  ( ph -> -. 2 || M ) | 
						
							| 3 |  | lgsquad2.3 |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | lgsquad2.4 |  |-  ( ph -> -. 2 || N ) | 
						
							| 5 |  | lgsquad2.5 |  |-  ( ph -> ( M gcd N ) = 1 ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. NN ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 || N ) | 
						
							| 8 |  | simprl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) | 
						
							| 9 |  | eldifi |  |-  ( m e. ( Prime \ { 2 } ) -> m e. Prime ) | 
						
							| 10 | 8 9 | syl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. Prime ) | 
						
							| 11 |  | prmnn |  |-  ( m e. Prime -> m e. NN ) | 
						
							| 12 | 10 11 | syl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. NN ) | 
						
							| 13 |  | eldifsni |  |-  ( m e. ( Prime \ { 2 } ) -> m =/= 2 ) | 
						
							| 14 | 8 13 | syl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m =/= 2 ) | 
						
							| 15 | 14 | necomd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> 2 =/= m ) | 
						
							| 16 | 15 | neneqd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 = m ) | 
						
							| 17 |  | 2z |  |-  2 e. ZZ | 
						
							| 18 |  | uzid |  |-  ( 2 e. ZZ -> 2 e. ( ZZ>= ` 2 ) ) | 
						
							| 19 | 17 18 | ax-mp |  |-  2 e. ( ZZ>= ` 2 ) | 
						
							| 20 |  | dvdsprm |  |-  ( ( 2 e. ( ZZ>= ` 2 ) /\ m e. Prime ) -> ( 2 || m <-> 2 = m ) ) | 
						
							| 21 | 19 10 20 | sylancr |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( 2 || m <-> 2 = m ) ) | 
						
							| 22 | 16 21 | mtbird |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> -. 2 || m ) | 
						
							| 23 | 6 | nnzd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. ZZ ) | 
						
							| 24 | 12 | nnzd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. ZZ ) | 
						
							| 25 | 23 24 | gcdcomd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N gcd m ) = ( m gcd N ) ) | 
						
							| 26 |  | simprr |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m gcd N ) = 1 ) | 
						
							| 27 | 25 26 | eqtrd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N gcd m ) = 1 ) | 
						
							| 28 |  | simprl |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> n e. ( Prime \ { 2 } ) ) | 
						
							| 29 | 8 | adantr |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> m e. ( Prime \ { 2 } ) ) | 
						
							| 30 |  | eldifi |  |-  ( n e. ( Prime \ { 2 } ) -> n e. Prime ) | 
						
							| 31 |  | prmrp |  |-  ( ( n e. Prime /\ m e. Prime ) -> ( ( n gcd m ) = 1 <-> n =/= m ) ) | 
						
							| 32 | 30 10 31 | syl2anr |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ n e. ( Prime \ { 2 } ) ) -> ( ( n gcd m ) = 1 <-> n =/= m ) ) | 
						
							| 33 | 32 | biimpd |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ n e. ( Prime \ { 2 } ) ) -> ( ( n gcd m ) = 1 -> n =/= m ) ) | 
						
							| 34 | 33 | impr |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> n =/= m ) | 
						
							| 35 |  | lgsquad |  |-  ( ( n e. ( Prime \ { 2 } ) /\ m e. ( Prime \ { 2 } ) /\ n =/= m ) -> ( ( n /L m ) x. ( m /L n ) ) = ( -u 1 ^ ( ( ( n - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) | 
						
							| 36 | 28 29 34 35 | syl3anc |  |-  ( ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) /\ ( n e. ( Prime \ { 2 } ) /\ ( n gcd m ) = 1 ) ) -> ( ( n /L m ) x. ( m /L n ) ) = ( -u 1 ^ ( ( ( n - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) | 
						
							| 37 |  | biid |  |-  ( A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. m ) ) = 1 -> ( ( x /L m ) x. ( m /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) <-> A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. m ) ) = 1 -> ( ( x /L m ) x. ( m /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) ) | 
						
							| 38 | 6 7 12 22 27 36 37 | lgsquad2lem2 |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( N /L m ) x. ( m /L N ) ) = ( -u 1 ^ ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) | 
						
							| 39 |  | lgscl |  |-  ( ( m e. ZZ /\ N e. ZZ ) -> ( m /L N ) e. ZZ ) | 
						
							| 40 | 24 23 39 | syl2anc |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m /L N ) e. ZZ ) | 
						
							| 41 |  | lgscl |  |-  ( ( N e. ZZ /\ m e. ZZ ) -> ( N /L m ) e. ZZ ) | 
						
							| 42 | 23 24 41 | syl2anc |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N /L m ) e. ZZ ) | 
						
							| 43 |  | zcn |  |-  ( ( m /L N ) e. ZZ -> ( m /L N ) e. CC ) | 
						
							| 44 |  | zcn |  |-  ( ( N /L m ) e. ZZ -> ( N /L m ) e. CC ) | 
						
							| 45 |  | mulcom |  |-  ( ( ( m /L N ) e. CC /\ ( N /L m ) e. CC ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) | 
						
							| 46 | 43 44 45 | syl2an |  |-  ( ( ( m /L N ) e. ZZ /\ ( N /L m ) e. ZZ ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) | 
						
							| 47 | 40 42 46 | syl2anc |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( ( N /L m ) x. ( m /L N ) ) ) | 
						
							| 48 | 12 | nncnd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> m e. CC ) | 
						
							| 49 |  | ax-1cn |  |-  1 e. CC | 
						
							| 50 |  | subcl |  |-  ( ( m e. CC /\ 1 e. CC ) -> ( m - 1 ) e. CC ) | 
						
							| 51 | 48 49 50 | sylancl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( m - 1 ) e. CC ) | 
						
							| 52 | 51 | halfcld |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m - 1 ) / 2 ) e. CC ) | 
						
							| 53 | 6 | nncnd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> N e. CC ) | 
						
							| 54 |  | subcl |  |-  ( ( N e. CC /\ 1 e. CC ) -> ( N - 1 ) e. CC ) | 
						
							| 55 | 53 49 54 | sylancl |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( N - 1 ) e. CC ) | 
						
							| 56 | 55 | halfcld |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( N - 1 ) / 2 ) e. CC ) | 
						
							| 57 | 52 56 | mulcomd |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) = ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) = ( -u 1 ^ ( ( ( N - 1 ) / 2 ) x. ( ( m - 1 ) / 2 ) ) ) ) | 
						
							| 59 | 38 47 58 | 3eqtr4d |  |-  ( ( ph /\ ( m e. ( Prime \ { 2 } ) /\ ( m gcd N ) = 1 ) ) -> ( ( m /L N ) x. ( N /L m ) ) = ( -u 1 ^ ( ( ( m - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) | 
						
							| 60 |  | biid |  |-  ( A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) <-> A. x e. ( 1 ... y ) ( ( x gcd ( 2 x. N ) ) = 1 -> ( ( x /L N ) x. ( N /L x ) ) = ( -u 1 ^ ( ( ( x - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) ) | 
						
							| 61 | 1 2 3 4 5 59 60 | lgsquad2lem2 |  |-  ( ph -> ( ( M /L N ) x. ( N /L M ) ) = ( -u 1 ^ ( ( ( M - 1 ) / 2 ) x. ( ( N - 1 ) / 2 ) ) ) ) |