| Step |
Hyp |
Ref |
Expression |
| 1 |
|
3anrot |
|- ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) <-> ( M e. ZZ /\ N e. ZZ /\ A e. ZZ ) ) |
| 2 |
|
lgsdilem |
|- ( ( ( M e. ZZ /\ N e. ZZ /\ A e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) ) |
| 3 |
1 2
|
sylanb |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) ) |
| 4 |
|
ancom |
|- ( ( ( M x. N ) < 0 /\ A < 0 ) <-> ( A < 0 /\ ( M x. N ) < 0 ) ) |
| 5 |
|
ifbi |
|- ( ( ( ( M x. N ) < 0 /\ A < 0 ) <-> ( A < 0 /\ ( M x. N ) < 0 ) ) -> if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) ) |
| 6 |
4 5
|
ax-mp |
|- if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ ( M x. N ) < 0 ) , -u 1 , 1 ) |
| 7 |
|
ancom |
|- ( ( M < 0 /\ A < 0 ) <-> ( A < 0 /\ M < 0 ) ) |
| 8 |
|
ifbi |
|- ( ( ( M < 0 /\ A < 0 ) <-> ( A < 0 /\ M < 0 ) ) -> if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) ) |
| 9 |
7 8
|
ax-mp |
|- if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) |
| 10 |
|
ancom |
|- ( ( N < 0 /\ A < 0 ) <-> ( A < 0 /\ N < 0 ) ) |
| 11 |
|
ifbi |
|- ( ( ( N < 0 /\ A < 0 ) <-> ( A < 0 /\ N < 0 ) ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) |
| 12 |
10 11
|
ax-mp |
|- if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) |
| 13 |
9 12
|
oveq12i |
|- ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) = ( if ( ( A < 0 /\ M < 0 ) , -u 1 , 1 ) x. if ( ( A < 0 /\ N < 0 ) , -u 1 , 1 ) ) |
| 14 |
3 6 13
|
3eqtr4g |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) ) |
| 15 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M e. ZZ ) |
| 16 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N e. ZZ ) |
| 17 |
15 16
|
zmulcld |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) e. ZZ ) |
| 18 |
15
|
zcnd |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M e. CC ) |
| 19 |
16
|
zcnd |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N e. CC ) |
| 20 |
|
simprl |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> M =/= 0 ) |
| 21 |
|
simprr |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> N =/= 0 ) |
| 22 |
18 19 20 21
|
mulne0d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) =/= 0 ) |
| 23 |
|
nnabscl |
|- ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) |
| 24 |
17 22 23
|
syl2anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) e. NN ) |
| 25 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 26 |
24 25
|
eleqtrdi |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) e. ( ZZ>= ` 1 ) ) |
| 27 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> A e. ZZ ) |
| 28 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) |
| 29 |
28
|
lgsfcl3 |
|- ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ ) |
| 30 |
27 15 20 29
|
syl3anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ ) |
| 31 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` ( M x. N ) ) ) -> k e. NN ) |
| 32 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) |
| 33 |
30 31 32
|
syl2an |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) |
| 34 |
33
|
zcnd |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. CC ) |
| 35 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
| 36 |
35
|
lgsfcl3 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 37 |
27 16 21 36
|
syl3anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 38 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 39 |
37 31 38
|
syl2an |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 40 |
39
|
zcnd |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
| 41 |
|
simpr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. Prime ) |
| 42 |
15
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. ZZ ) |
| 43 |
20
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M =/= 0 ) |
| 44 |
16
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> N e. ZZ ) |
| 45 |
21
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> N =/= 0 ) |
| 46 |
|
pcmul |
|- ( ( k e. Prime /\ ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt ( M x. N ) ) = ( ( k pCnt M ) + ( k pCnt N ) ) ) |
| 47 |
41 42 43 44 45 46
|
syl122anc |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( M x. N ) ) = ( ( k pCnt M ) + ( k pCnt N ) ) ) |
| 48 |
47
|
oveq2d |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) = ( ( A /L k ) ^ ( ( k pCnt M ) + ( k pCnt N ) ) ) ) |
| 49 |
27
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> A e. ZZ ) |
| 50 |
|
prmz |
|- ( k e. Prime -> k e. ZZ ) |
| 51 |
50
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. ZZ ) |
| 52 |
|
lgscl |
|- ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) |
| 53 |
49 51 52
|
syl2anc |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) |
| 54 |
53
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. CC ) |
| 55 |
|
pczcl |
|- ( ( k e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt N ) e. NN0 ) |
| 56 |
41 44 45 55
|
syl12anc |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt N ) e. NN0 ) |
| 57 |
|
pczcl |
|- ( ( k e. Prime /\ ( M e. ZZ /\ M =/= 0 ) ) -> ( k pCnt M ) e. NN0 ) |
| 58 |
41 42 43 57
|
syl12anc |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt M ) e. NN0 ) |
| 59 |
54 56 58
|
expaddd |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( ( k pCnt M ) + ( k pCnt N ) ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) |
| 60 |
48 59
|
eqtrd |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) |
| 61 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) |
| 62 |
61
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) |
| 63 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) |
| 64 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) |
| 65 |
63 64
|
oveq12d |
|- ( k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) |
| 66 |
65
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt M ) ) x. ( ( A /L k ) ^ ( k pCnt N ) ) ) ) |
| 67 |
60 62 66
|
3eqtr4rd |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 68 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 69 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = 1 ) |
| 70 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) |
| 71 |
69 70
|
oveq12d |
|- ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( 1 x. 1 ) ) |
| 72 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) = 1 ) |
| 73 |
68 71 72
|
3eqtr4a |
|- ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 74 |
73
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) /\ -. k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 75 |
67 74
|
pm2.61dan |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 76 |
31
|
adantl |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> k e. NN ) |
| 77 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
| 78 |
|
oveq2 |
|- ( n = k -> ( A /L n ) = ( A /L k ) ) |
| 79 |
|
oveq1 |
|- ( n = k -> ( n pCnt M ) = ( k pCnt M ) ) |
| 80 |
78 79
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt M ) ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) |
| 81 |
77 80
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) |
| 82 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt M ) ) e. _V |
| 83 |
|
1ex |
|- 1 e. _V |
| 84 |
82 83
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) e. _V |
| 85 |
81 28 84
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) |
| 86 |
|
oveq1 |
|- ( n = k -> ( n pCnt N ) = ( k pCnt N ) ) |
| 87 |
78 86
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) |
| 88 |
77 87
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 89 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt N ) ) e. _V |
| 90 |
89 83
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V |
| 91 |
88 35 90
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 92 |
85 91
|
oveq12d |
|- ( k e. NN -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 93 |
76 92
|
syl |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) x. if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 94 |
|
oveq1 |
|- ( n = k -> ( n pCnt ( M x. N ) ) = ( k pCnt ( M x. N ) ) ) |
| 95 |
78 94
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) = ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) ) |
| 96 |
77 95
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 97 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) |
| 98 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) e. _V |
| 99 |
98 83
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) e. _V |
| 100 |
96 97 99
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 101 |
76 100
|
syl |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt ( M x. N ) ) ) , 1 ) ) |
| 102 |
75 93 101
|
3eqtr4rd |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` ( M x. N ) ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ` k ) = ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) ) |
| 103 |
26 34 40 102
|
prodfmul |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) |
| 104 |
27 15 16 20 21 28
|
lgsdilem2 |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) |
| 105 |
27 16 15 21 20 35
|
lgsdilem2 |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( N x. M ) ) ) ) |
| 106 |
18 19
|
mulcomd |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( M x. N ) = ( N x. M ) ) |
| 107 |
106
|
fveq2d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` ( M x. N ) ) = ( abs ` ( N x. M ) ) ) |
| 108 |
107
|
fveq2d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( N x. M ) ) ) ) |
| 109 |
105 108
|
eqtr4d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) |
| 110 |
104 109
|
oveq12d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) |
| 111 |
103 110
|
eqtr4d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 112 |
14 111
|
oveq12d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 113 |
97
|
lgsval4 |
|- ( ( A e. ZZ /\ ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( A /L ( M x. N ) ) = ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) |
| 114 |
27 17 22 113
|
syl3anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L ( M x. N ) ) = ( if ( ( ( M x. N ) < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt ( M x. N ) ) ) , 1 ) ) ) ` ( abs ` ( M x. N ) ) ) ) ) |
| 115 |
28
|
lgsval4 |
|- ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> ( A /L M ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) ) |
| 116 |
27 15 20 115
|
syl3anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L M ) = ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) ) |
| 117 |
35
|
lgsval4 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 118 |
27 16 21 117
|
syl3anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 119 |
116 118
|
oveq12d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( A /L M ) x. ( A /L N ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 120 |
|
neg1cn |
|- -u 1 e. CC |
| 121 |
|
ax-1cn |
|- 1 e. CC |
| 122 |
120 121
|
ifcli |
|- if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC |
| 123 |
122
|
a1i |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) |
| 124 |
|
nnabscl |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
| 125 |
15 20 124
|
syl2anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` M ) e. NN ) |
| 126 |
125 25
|
eleqtrdi |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` M ) e. ( ZZ>= ` 1 ) ) |
| 127 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` M ) ) -> k e. NN ) |
| 128 |
30 127 32
|
syl2an |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. ZZ ) |
| 129 |
128
|
zcnd |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ` k ) e. CC ) |
| 130 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 131 |
130
|
adantl |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 132 |
126 129 131
|
seqcl |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) e. CC ) |
| 133 |
120 121
|
ifcli |
|- if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC |
| 134 |
133
|
a1i |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) |
| 135 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 136 |
16 21 135
|
syl2anc |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` N ) e. NN ) |
| 137 |
136 25
|
eleqtrdi |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) |
| 138 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` N ) ) -> k e. NN ) |
| 139 |
37 138 38
|
syl2an |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 140 |
139
|
zcnd |
|- ( ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
| 141 |
137 140 131
|
seqcl |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) |
| 142 |
123 132 134 141
|
mul4d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) ) x. ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 143 |
119 142
|
eqtrd |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( A /L M ) x. ( A /L N ) ) = ( ( if ( ( M < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) ) ` ( abs ` M ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 144 |
112 114 143
|
3eqtr4d |
|- ( ( ( A e. ZZ /\ M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( A /L ( M x. N ) ) = ( ( A /L M ) x. ( A /L N ) ) ) |