| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsdilem2.1 |
|- ( ph -> A e. ZZ ) |
| 2 |
|
lgsdilem2.2 |
|- ( ph -> M e. ZZ ) |
| 3 |
|
lgsdilem2.3 |
|- ( ph -> N e. ZZ ) |
| 4 |
|
lgsdilem2.4 |
|- ( ph -> M =/= 0 ) |
| 5 |
|
lgsdilem2.5 |
|- ( ph -> N =/= 0 ) |
| 6 |
|
lgsdilem2.6 |
|- F = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) ) |
| 7 |
|
mulrid |
|- ( k e. CC -> ( k x. 1 ) = k ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ k e. CC ) -> ( k x. 1 ) = k ) |
| 9 |
|
nnabscl |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) |
| 10 |
2 4 9
|
syl2anc |
|- ( ph -> ( abs ` M ) e. NN ) |
| 11 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 12 |
10 11
|
eleqtrdi |
|- ( ph -> ( abs ` M ) e. ( ZZ>= ` 1 ) ) |
| 13 |
10
|
nnzd |
|- ( ph -> ( abs ` M ) e. ZZ ) |
| 14 |
2 3
|
zmulcld |
|- ( ph -> ( M x. N ) e. ZZ ) |
| 15 |
2
|
zcnd |
|- ( ph -> M e. CC ) |
| 16 |
3
|
zcnd |
|- ( ph -> N e. CC ) |
| 17 |
15 16 4 5
|
mulne0d |
|- ( ph -> ( M x. N ) =/= 0 ) |
| 18 |
|
nnabscl |
|- ( ( ( M x. N ) e. ZZ /\ ( M x. N ) =/= 0 ) -> ( abs ` ( M x. N ) ) e. NN ) |
| 19 |
14 17 18
|
syl2anc |
|- ( ph -> ( abs ` ( M x. N ) ) e. NN ) |
| 20 |
19
|
nnzd |
|- ( ph -> ( abs ` ( M x. N ) ) e. ZZ ) |
| 21 |
15
|
abscld |
|- ( ph -> ( abs ` M ) e. RR ) |
| 22 |
16
|
abscld |
|- ( ph -> ( abs ` N ) e. RR ) |
| 23 |
15
|
absge0d |
|- ( ph -> 0 <_ ( abs ` M ) ) |
| 24 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 25 |
3 5 24
|
syl2anc |
|- ( ph -> ( abs ` N ) e. NN ) |
| 26 |
25
|
nnge1d |
|- ( ph -> 1 <_ ( abs ` N ) ) |
| 27 |
21 22 23 26
|
lemulge11d |
|- ( ph -> ( abs ` M ) <_ ( ( abs ` M ) x. ( abs ` N ) ) ) |
| 28 |
15 16
|
absmuld |
|- ( ph -> ( abs ` ( M x. N ) ) = ( ( abs ` M ) x. ( abs ` N ) ) ) |
| 29 |
27 28
|
breqtrrd |
|- ( ph -> ( abs ` M ) <_ ( abs ` ( M x. N ) ) ) |
| 30 |
|
eluz2 |
|- ( ( abs ` ( M x. N ) ) e. ( ZZ>= ` ( abs ` M ) ) <-> ( ( abs ` M ) e. ZZ /\ ( abs ` ( M x. N ) ) e. ZZ /\ ( abs ` M ) <_ ( abs ` ( M x. N ) ) ) ) |
| 31 |
13 20 29 30
|
syl3anbrc |
|- ( ph -> ( abs ` ( M x. N ) ) e. ( ZZ>= ` ( abs ` M ) ) ) |
| 32 |
6
|
lgsfcl3 |
|- ( ( A e. ZZ /\ M e. ZZ /\ M =/= 0 ) -> F : NN --> ZZ ) |
| 33 |
1 2 4 32
|
syl3anc |
|- ( ph -> F : NN --> ZZ ) |
| 34 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` M ) ) -> k e. NN ) |
| 35 |
|
ffvelcdm |
|- ( ( F : NN --> ZZ /\ k e. NN ) -> ( F ` k ) e. ZZ ) |
| 36 |
33 34 35
|
syl2an |
|- ( ( ph /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( F ` k ) e. ZZ ) |
| 37 |
36
|
zcnd |
|- ( ( ph /\ k e. ( 1 ... ( abs ` M ) ) ) -> ( F ` k ) e. CC ) |
| 38 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 39 |
38
|
adantl |
|- ( ( ph /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 40 |
12 37 39
|
seqcl |
|- ( ph -> ( seq 1 ( x. , F ) ` ( abs ` M ) ) e. CC ) |
| 41 |
10
|
peano2nnd |
|- ( ph -> ( ( abs ` M ) + 1 ) e. NN ) |
| 42 |
|
elfzuz |
|- ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> k e. ( ZZ>= ` ( ( abs ` M ) + 1 ) ) ) |
| 43 |
|
eluznn |
|- ( ( ( ( abs ` M ) + 1 ) e. NN /\ k e. ( ZZ>= ` ( ( abs ` M ) + 1 ) ) ) -> k e. NN ) |
| 44 |
41 42 43
|
syl2an |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. NN ) |
| 45 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
| 46 |
|
oveq2 |
|- ( n = k -> ( A /L n ) = ( A /L k ) ) |
| 47 |
|
oveq1 |
|- ( n = k -> ( n pCnt M ) = ( k pCnt M ) ) |
| 48 |
46 47
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt M ) ) = ( ( A /L k ) ^ ( k pCnt M ) ) ) |
| 49 |
45 48
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt M ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) |
| 50 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt M ) ) e. _V |
| 51 |
|
1ex |
|- 1 e. _V |
| 52 |
50 51
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) e. _V |
| 53 |
49 6 52
|
fvmpt |
|- ( k e. NN -> ( F ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) |
| 54 |
44 53
|
syl |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( F ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) ) |
| 55 |
|
simpr |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. Prime ) |
| 56 |
2
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. ZZ ) |
| 57 |
|
zq |
|- ( M e. ZZ -> M e. QQ ) |
| 58 |
56 57
|
syl |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M e. QQ ) |
| 59 |
|
pcabs |
|- ( ( k e. Prime /\ M e. QQ ) -> ( k pCnt ( abs ` M ) ) = ( k pCnt M ) ) |
| 60 |
55 58 59
|
syl2anc |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( abs ` M ) ) = ( k pCnt M ) ) |
| 61 |
|
elfzle1 |
|- ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> ( ( abs ` M ) + 1 ) <_ k ) |
| 62 |
61
|
adantl |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) + 1 ) <_ k ) |
| 63 |
|
elfzelz |
|- ( k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) -> k e. ZZ ) |
| 64 |
|
zltp1le |
|- ( ( ( abs ` M ) e. ZZ /\ k e. ZZ ) -> ( ( abs ` M ) < k <-> ( ( abs ` M ) + 1 ) <_ k ) ) |
| 65 |
13 63 64
|
syl2an |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) < k <-> ( ( abs ` M ) + 1 ) <_ k ) ) |
| 66 |
62 65
|
mpbird |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( abs ` M ) < k ) |
| 67 |
21
|
adantr |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( abs ` M ) e. RR ) |
| 68 |
63
|
adantl |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. ZZ ) |
| 69 |
68
|
zred |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> k e. RR ) |
| 70 |
67 69
|
ltnled |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( ( abs ` M ) < k <-> -. k <_ ( abs ` M ) ) ) |
| 71 |
66 70
|
mpbid |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> -. k <_ ( abs ` M ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> -. k <_ ( abs ` M ) ) |
| 73 |
|
prmz |
|- ( k e. Prime -> k e. ZZ ) |
| 74 |
73
|
adantl |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> k e. ZZ ) |
| 75 |
4
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> M =/= 0 ) |
| 76 |
56 75 9
|
syl2anc |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( abs ` M ) e. NN ) |
| 77 |
|
dvdsle |
|- ( ( k e. ZZ /\ ( abs ` M ) e. NN ) -> ( k || ( abs ` M ) -> k <_ ( abs ` M ) ) ) |
| 78 |
74 76 77
|
syl2anc |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k || ( abs ` M ) -> k <_ ( abs ` M ) ) ) |
| 79 |
72 78
|
mtod |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> -. k || ( abs ` M ) ) |
| 80 |
|
pceq0 |
|- ( ( k e. Prime /\ ( abs ` M ) e. NN ) -> ( ( k pCnt ( abs ` M ) ) = 0 <-> -. k || ( abs ` M ) ) ) |
| 81 |
55 76 80
|
syl2anc |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( k pCnt ( abs ` M ) ) = 0 <-> -. k || ( abs ` M ) ) ) |
| 82 |
79 81
|
mpbird |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt ( abs ` M ) ) = 0 ) |
| 83 |
60 82
|
eqtr3d |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( k pCnt M ) = 0 ) |
| 84 |
83
|
oveq2d |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt M ) ) = ( ( A /L k ) ^ 0 ) ) |
| 85 |
1
|
ad2antrr |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> A e. ZZ ) |
| 86 |
|
lgscl |
|- ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) |
| 87 |
85 74 86
|
syl2anc |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) |
| 88 |
87
|
zcnd |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( A /L k ) e. CC ) |
| 89 |
88
|
exp0d |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ 0 ) = 1 ) |
| 90 |
84 89
|
eqtrd |
|- ( ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) /\ k e. Prime ) -> ( ( A /L k ) ^ ( k pCnt M ) ) = 1 ) |
| 91 |
90
|
ifeq1da |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = if ( k e. Prime , 1 , 1 ) ) |
| 92 |
|
ifid |
|- if ( k e. Prime , 1 , 1 ) = 1 |
| 93 |
91 92
|
eqtrdi |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt M ) ) , 1 ) = 1 ) |
| 94 |
54 93
|
eqtrd |
|- ( ( ph /\ k e. ( ( ( abs ` M ) + 1 ) ... ( abs ` ( M x. N ) ) ) ) -> ( F ` k ) = 1 ) |
| 95 |
8 12 31 40 94
|
seqid2 |
|- ( ph -> ( seq 1 ( x. , F ) ` ( abs ` M ) ) = ( seq 1 ( x. , F ) ` ( abs ` ( M x. N ) ) ) ) |