| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq2 |
|- ( ( abs ` A ) = A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |
| 2 |
1
|
a1i |
|- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) ) |
| 3 |
|
pcneg |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt -u A ) = ( P pCnt A ) ) |
| 4 |
|
oveq2 |
|- ( ( abs ` A ) = -u A -> ( P pCnt ( abs ` A ) ) = ( P pCnt -u A ) ) |
| 5 |
4
|
eqeq1d |
|- ( ( abs ` A ) = -u A -> ( ( P pCnt ( abs ` A ) ) = ( P pCnt A ) <-> ( P pCnt -u A ) = ( P pCnt A ) ) ) |
| 6 |
3 5
|
syl5ibrcom |
|- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = -u A -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) ) |
| 7 |
|
qre |
|- ( A e. QQ -> A e. RR ) |
| 8 |
7
|
adantl |
|- ( ( P e. Prime /\ A e. QQ ) -> A e. RR ) |
| 9 |
8
|
absord |
|- ( ( P e. Prime /\ A e. QQ ) -> ( ( abs ` A ) = A \/ ( abs ` A ) = -u A ) ) |
| 10 |
2 6 9
|
mpjaod |
|- ( ( P e. Prime /\ A e. QQ ) -> ( P pCnt ( abs ` A ) ) = ( P pCnt A ) ) |