| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0z |
|- 0 e. ZZ |
| 2 |
|
zq |
|- ( 0 e. ZZ -> 0 e. QQ ) |
| 3 |
1 2
|
ax-mp |
|- 0 e. QQ |
| 4 |
|
pcxcl |
|- ( ( P e. Prime /\ 0 e. QQ ) -> ( P pCnt 0 ) e. RR* ) |
| 5 |
3 4
|
mpan2 |
|- ( P e. Prime -> ( P pCnt 0 ) e. RR* ) |
| 6 |
5
|
xrleidd |
|- ( P e. Prime -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
| 7 |
6
|
ad2antrr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt 0 ) <_ ( P pCnt 0 ) ) |
| 8 |
|
simpr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A = 0 ) |
| 9 |
8
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) = ( P pCnt 0 ) ) |
| 10 |
|
simplr3 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> A || B ) |
| 11 |
8 10
|
eqbrtrrd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> 0 || B ) |
| 12 |
|
simplr2 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B e. ZZ ) |
| 13 |
|
0dvds |
|- ( B e. ZZ -> ( 0 || B <-> B = 0 ) ) |
| 14 |
12 13
|
syl |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( 0 || B <-> B = 0 ) ) |
| 15 |
11 14
|
mpbid |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> B = 0 ) |
| 16 |
15
|
oveq2d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt B ) = ( P pCnt 0 ) ) |
| 17 |
7 9 16
|
3brtr4d |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A = 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 18 |
|
prmnn |
|- ( P e. Prime -> P e. NN ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. NN ) |
| 20 |
|
simpll |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> P e. Prime ) |
| 21 |
|
simplr1 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A e. ZZ ) |
| 22 |
|
simpr |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A =/= 0 ) |
| 23 |
|
pczcl |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P pCnt A ) e. NN0 ) |
| 24 |
20 21 22 23
|
syl12anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) e. NN0 ) |
| 25 |
19 24
|
nnexpcld |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. NN ) |
| 26 |
25
|
nnzd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) e. ZZ ) |
| 27 |
|
simplr2 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> B e. ZZ ) |
| 28 |
|
pczdvds |
|- ( ( P e. Prime /\ ( A e. ZZ /\ A =/= 0 ) ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 29 |
20 21 22 28
|
syl12anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || A ) |
| 30 |
|
simplr3 |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> A || B ) |
| 31 |
26 21 27 29 30
|
dvdstrd |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P ^ ( P pCnt A ) ) || B ) |
| 32 |
|
pcdvdsb |
|- ( ( P e. Prime /\ B e. ZZ /\ ( P pCnt A ) e. NN0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
| 33 |
20 27 24 32
|
syl3anc |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( ( P pCnt A ) <_ ( P pCnt B ) <-> ( P ^ ( P pCnt A ) ) || B ) ) |
| 34 |
31 33
|
mpbird |
|- ( ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) /\ A =/= 0 ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |
| 35 |
17 34
|
pm2.61dane |
|- ( ( P e. Prime /\ ( A e. ZZ /\ B e. ZZ /\ A || B ) ) -> ( P pCnt A ) <_ ( P pCnt B ) ) |