| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lgsdilem2.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℤ ) |
| 2 |
|
lgsdilem2.2 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 3 |
|
lgsdilem2.3 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
| 4 |
|
lgsdilem2.4 |
⊢ ( 𝜑 → 𝑀 ≠ 0 ) |
| 5 |
|
lgsdilem2.5 |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
| 6 |
|
lgsdilem2.6 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑀 ) ) , 1 ) ) |
| 7 |
|
mulrid |
⊢ ( 𝑘 ∈ ℂ → ( 𝑘 · 1 ) = 𝑘 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℂ ) → ( 𝑘 · 1 ) = 𝑘 ) |
| 9 |
|
nnabscl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → ( abs ‘ 𝑀 ) ∈ ℕ ) |
| 10 |
2 4 9
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ∈ ℕ ) |
| 11 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
| 12 |
10 11
|
eleqtrdi |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ∈ ( ℤ≥ ‘ 1 ) ) |
| 13 |
10
|
nnzd |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ∈ ℤ ) |
| 14 |
2 3
|
zmulcld |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ∈ ℤ ) |
| 15 |
2
|
zcnd |
⊢ ( 𝜑 → 𝑀 ∈ ℂ ) |
| 16 |
3
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
| 17 |
15 16 4 5
|
mulne0d |
⊢ ( 𝜑 → ( 𝑀 · 𝑁 ) ≠ 0 ) |
| 18 |
|
nnabscl |
⊢ ( ( ( 𝑀 · 𝑁 ) ∈ ℤ ∧ ( 𝑀 · 𝑁 ) ≠ 0 ) → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) |
| 19 |
14 17 18
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℕ ) |
| 20 |
19
|
nnzd |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℤ ) |
| 21 |
15
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ∈ ℝ ) |
| 22 |
16
|
abscld |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) ∈ ℝ ) |
| 23 |
15
|
absge0d |
⊢ ( 𝜑 → 0 ≤ ( abs ‘ 𝑀 ) ) |
| 24 |
|
nnabscl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( abs ‘ 𝑁 ) ∈ ℕ ) |
| 25 |
3 5 24
|
syl2anc |
⊢ ( 𝜑 → ( abs ‘ 𝑁 ) ∈ ℕ ) |
| 26 |
25
|
nnge1d |
⊢ ( 𝜑 → 1 ≤ ( abs ‘ 𝑁 ) ) |
| 27 |
21 22 23 26
|
lemulge11d |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ≤ ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) ) |
| 28 |
15 16
|
absmuld |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 · 𝑁 ) ) = ( ( abs ‘ 𝑀 ) · ( abs ‘ 𝑁 ) ) ) |
| 29 |
27 28
|
breqtrrd |
⊢ ( 𝜑 → ( abs ‘ 𝑀 ) ≤ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) |
| 30 |
|
eluz2 |
⊢ ( ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ( ℤ≥ ‘ ( abs ‘ 𝑀 ) ) ↔ ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ℤ ∧ ( abs ‘ 𝑀 ) ≤ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |
| 31 |
13 20 29 30
|
syl3anbrc |
⊢ ( 𝜑 → ( abs ‘ ( 𝑀 · 𝑁 ) ) ∈ ( ℤ≥ ‘ ( abs ‘ 𝑀 ) ) ) |
| 32 |
6
|
lgsfcl3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑀 ≠ 0 ) → 𝐹 : ℕ ⟶ ℤ ) |
| 33 |
1 2 4 32
|
syl3anc |
⊢ ( 𝜑 → 𝐹 : ℕ ⟶ ℤ ) |
| 34 |
|
elfznn |
⊢ ( 𝑘 ∈ ( 1 ... ( abs ‘ 𝑀 ) ) → 𝑘 ∈ ℕ ) |
| 35 |
|
ffvelcdm |
⊢ ( ( 𝐹 : ℕ ⟶ ℤ ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 36 |
33 34 35
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( abs ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℤ ) |
| 37 |
36
|
zcnd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 1 ... ( abs ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 38 |
|
mulcl |
⊢ ( ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑘 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑘 · 𝑥 ) ∈ ℂ ) |
| 40 |
12 37 39
|
seqcl |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑀 ) ) ∈ ℂ ) |
| 41 |
10
|
peano2nnd |
⊢ ( 𝜑 → ( ( abs ‘ 𝑀 ) + 1 ) ∈ ℕ ) |
| 42 |
|
elfzuz |
⊢ ( 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) → 𝑘 ∈ ( ℤ≥ ‘ ( ( abs ‘ 𝑀 ) + 1 ) ) ) |
| 43 |
|
eluznn |
⊢ ( ( ( ( abs ‘ 𝑀 ) + 1 ) ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ ( ( abs ‘ 𝑀 ) + 1 ) ) ) → 𝑘 ∈ ℕ ) |
| 44 |
41 42 43
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → 𝑘 ∈ ℕ ) |
| 45 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ ℙ ↔ 𝑘 ∈ ℙ ) ) |
| 46 |
|
oveq2 |
⊢ ( 𝑛 = 𝑘 → ( 𝐴 /L 𝑛 ) = ( 𝐴 /L 𝑘 ) ) |
| 47 |
|
oveq1 |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 pCnt 𝑀 ) = ( 𝑘 pCnt 𝑀 ) ) |
| 48 |
46 47
|
oveq12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑀 ) ) = ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) ) |
| 49 |
45 48
|
ifbieq1d |
⊢ ( 𝑛 = 𝑘 → if ( 𝑛 ∈ ℙ , ( ( 𝐴 /L 𝑛 ) ↑ ( 𝑛 pCnt 𝑀 ) ) , 1 ) = if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) ) |
| 50 |
|
ovex |
⊢ ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) ∈ V |
| 51 |
|
1ex |
⊢ 1 ∈ V |
| 52 |
50 51
|
ifex |
⊢ if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) ∈ V |
| 53 |
49 6 52
|
fvmpt |
⊢ ( 𝑘 ∈ ℕ → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) ) |
| 54 |
44 53
|
syl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) ) |
| 55 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝑘 ∈ ℙ ) |
| 56 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝑀 ∈ ℤ ) |
| 57 |
|
zq |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℚ ) |
| 58 |
56 57
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝑀 ∈ ℚ ) |
| 59 |
|
pcabs |
⊢ ( ( 𝑘 ∈ ℙ ∧ 𝑀 ∈ ℚ ) → ( 𝑘 pCnt ( abs ‘ 𝑀 ) ) = ( 𝑘 pCnt 𝑀 ) ) |
| 60 |
55 58 59
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝑘 pCnt ( abs ‘ 𝑀 ) ) = ( 𝑘 pCnt 𝑀 ) ) |
| 61 |
|
elfzle1 |
⊢ ( 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) → ( ( abs ‘ 𝑀 ) + 1 ) ≤ 𝑘 ) |
| 62 |
61
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( ( abs ‘ 𝑀 ) + 1 ) ≤ 𝑘 ) |
| 63 |
|
elfzelz |
⊢ ( 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) → 𝑘 ∈ ℤ ) |
| 64 |
|
zltp1le |
⊢ ( ( ( abs ‘ 𝑀 ) ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( ( abs ‘ 𝑀 ) < 𝑘 ↔ ( ( abs ‘ 𝑀 ) + 1 ) ≤ 𝑘 ) ) |
| 65 |
13 63 64
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( ( abs ‘ 𝑀 ) < 𝑘 ↔ ( ( abs ‘ 𝑀 ) + 1 ) ≤ 𝑘 ) ) |
| 66 |
62 65
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( abs ‘ 𝑀 ) < 𝑘 ) |
| 67 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( abs ‘ 𝑀 ) ∈ ℝ ) |
| 68 |
63
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → 𝑘 ∈ ℤ ) |
| 69 |
68
|
zred |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → 𝑘 ∈ ℝ ) |
| 70 |
67 69
|
ltnled |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( ( abs ‘ 𝑀 ) < 𝑘 ↔ ¬ 𝑘 ≤ ( abs ‘ 𝑀 ) ) ) |
| 71 |
66 70
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ¬ 𝑘 ≤ ( abs ‘ 𝑀 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ¬ 𝑘 ≤ ( abs ‘ 𝑀 ) ) |
| 73 |
|
prmz |
⊢ ( 𝑘 ∈ ℙ → 𝑘 ∈ ℤ ) |
| 74 |
73
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝑘 ∈ ℤ ) |
| 75 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝑀 ≠ 0 ) |
| 76 |
56 75 9
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( abs ‘ 𝑀 ) ∈ ℕ ) |
| 77 |
|
dvdsle |
⊢ ( ( 𝑘 ∈ ℤ ∧ ( abs ‘ 𝑀 ) ∈ ℕ ) → ( 𝑘 ∥ ( abs ‘ 𝑀 ) → 𝑘 ≤ ( abs ‘ 𝑀 ) ) ) |
| 78 |
74 76 77
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝑘 ∥ ( abs ‘ 𝑀 ) → 𝑘 ≤ ( abs ‘ 𝑀 ) ) ) |
| 79 |
72 78
|
mtod |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ¬ 𝑘 ∥ ( abs ‘ 𝑀 ) ) |
| 80 |
|
pceq0 |
⊢ ( ( 𝑘 ∈ ℙ ∧ ( abs ‘ 𝑀 ) ∈ ℕ ) → ( ( 𝑘 pCnt ( abs ‘ 𝑀 ) ) = 0 ↔ ¬ 𝑘 ∥ ( abs ‘ 𝑀 ) ) ) |
| 81 |
55 76 80
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( ( 𝑘 pCnt ( abs ‘ 𝑀 ) ) = 0 ↔ ¬ 𝑘 ∥ ( abs ‘ 𝑀 ) ) ) |
| 82 |
79 81
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝑘 pCnt ( abs ‘ 𝑀 ) ) = 0 ) |
| 83 |
60 82
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝑘 pCnt 𝑀 ) = 0 ) |
| 84 |
83
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) = ( ( 𝐴 /L 𝑘 ) ↑ 0 ) ) |
| 85 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 86 |
|
lgscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑘 ∈ ℤ ) → ( 𝐴 /L 𝑘 ) ∈ ℤ ) |
| 87 |
85 74 86
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝐴 /L 𝑘 ) ∈ ℤ ) |
| 88 |
87
|
zcnd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( 𝐴 /L 𝑘 ) ∈ ℂ ) |
| 89 |
88
|
exp0d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( ( 𝐴 /L 𝑘 ) ↑ 0 ) = 1 ) |
| 90 |
84 89
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) ∧ 𝑘 ∈ ℙ ) → ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) = 1 ) |
| 91 |
90
|
ifeq1da |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) = if ( 𝑘 ∈ ℙ , 1 , 1 ) ) |
| 92 |
|
ifid |
⊢ if ( 𝑘 ∈ ℙ , 1 , 1 ) = 1 |
| 93 |
91 92
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → if ( 𝑘 ∈ ℙ , ( ( 𝐴 /L 𝑘 ) ↑ ( 𝑘 pCnt 𝑀 ) ) , 1 ) = 1 ) |
| 94 |
54 93
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( ( abs ‘ 𝑀 ) + 1 ) ... ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) → ( 𝐹 ‘ 𝑘 ) = 1 ) |
| 95 |
8 12 31 40 94
|
seqid2 |
⊢ ( 𝜑 → ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑀 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ ( 𝑀 · 𝑁 ) ) ) ) |