| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simplrr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B =/= 0 ) | 
						
							| 2 | 1 | biantrud |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> ( 0 <_ B /\ B =/= 0 ) ) ) | 
						
							| 3 |  | 0re |  |-  0 e. RR | 
						
							| 4 |  | simpl2 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. ZZ ) | 
						
							| 5 | 4 | zred |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR ) | 
						
							| 6 | 5 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. RR ) | 
						
							| 7 |  | ltlen |  |-  ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) | 
						
							| 8 | 3 6 7 | sylancr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) | 
						
							| 9 |  | simpl1 |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. ZZ ) | 
						
							| 10 | 9 | zred |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR ) | 
						
							| 11 | 10 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. RR ) | 
						
							| 12 | 11 | renegcld |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. RR ) | 
						
							| 13 | 12 | recnd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. CC ) | 
						
							| 14 | 13 | mul01d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. 0 ) = 0 ) | 
						
							| 15 | 11 | recnd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. CC ) | 
						
							| 16 | 6 | recnd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. CC ) | 
						
							| 17 | 15 16 | mulneg1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. B ) = -u ( A x. B ) ) | 
						
							| 18 | 14 17 | breq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( -u A x. 0 ) < ( -u A x. B ) <-> 0 < -u ( A x. B ) ) ) | 
						
							| 19 |  | 0red |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 e. RR ) | 
						
							| 20 | 10 | lt0neg1d |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A < 0 <-> 0 < -u A ) ) | 
						
							| 21 | 20 | biimpa |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 < -u A ) | 
						
							| 22 |  | ltmul2 |  |-  ( ( 0 e. RR /\ B e. RR /\ ( -u A e. RR /\ 0 < -u A ) ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) | 
						
							| 23 | 19 6 12 21 22 | syl112anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) | 
						
							| 24 | 10 5 | remulcld |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) | 
						
							| 25 | 24 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( A x. B ) e. RR ) | 
						
							| 26 | 25 | lt0neg1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) | 
						
							| 27 | 18 23 26 | 3bitr4d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( A x. B ) < 0 ) ) | 
						
							| 28 | 2 8 27 | 3bitr2rd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 <_ B ) ) | 
						
							| 29 |  | lenlt |  |-  ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> -. B < 0 ) ) | 
						
							| 30 | 3 6 29 | sylancr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> -. B < 0 ) ) | 
						
							| 31 | 28 30 | bitrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> -. B < 0 ) ) | 
						
							| 32 | 31 | ifbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( -. B < 0 , -u 1 , 1 ) ) | 
						
							| 33 |  | oveq2 |  |-  ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. -u 1 ) ) | 
						
							| 34 |  | neg1mulneg1e1 |  |-  ( -u 1 x. -u 1 ) = 1 | 
						
							| 35 | 33 34 | eqtrdi |  |-  ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = 1 ) | 
						
							| 36 |  | oveq2 |  |-  ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. 1 ) ) | 
						
							| 37 |  | ax-1cn |  |-  1 e. CC | 
						
							| 38 | 37 | mulm1i |  |-  ( -u 1 x. 1 ) = -u 1 | 
						
							| 39 | 36 38 | eqtrdi |  |-  ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = -u 1 ) | 
						
							| 40 | 35 39 | ifsb |  |-  ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , 1 , -u 1 ) | 
						
							| 41 |  | ifnot |  |-  if ( -. B < 0 , -u 1 , 1 ) = if ( B < 0 , 1 , -u 1 ) | 
						
							| 42 | 40 41 | eqtr4i |  |-  ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( -. B < 0 , -u 1 , 1 ) | 
						
							| 43 | 32 42 | eqtr4di |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 44 |  | iftrue |  |-  ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 45 | 44 | adantl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) | 
						
							| 46 | 45 | oveq1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 47 | 43 46 | eqtr4d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 48 |  | iffalse |  |-  ( -. A < 0 -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 49 | 48 | adantl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) | 
						
							| 50 | 49 | oveq1d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( 1 x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 51 |  | neg1cn |  |-  -u 1 e. CC | 
						
							| 52 | 51 37 | ifcli |  |-  if ( B < 0 , -u 1 , 1 ) e. CC | 
						
							| 53 | 52 | mullidi |  |-  ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , -u 1 , 1 ) | 
						
							| 54 | 5 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> B e. RR ) | 
						
							| 55 |  | 0red |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 e. RR ) | 
						
							| 56 | 10 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. RR ) | 
						
							| 57 |  | lenlt |  |-  ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) | 
						
							| 58 | 3 10 57 | sylancr |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( 0 <_ A <-> -. A < 0 ) ) | 
						
							| 59 | 58 | biimpar |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 <_ A ) | 
						
							| 60 |  | simplrl |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A =/= 0 ) | 
						
							| 61 | 56 59 60 | ne0gt0d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 < A ) | 
						
							| 62 |  | ltmul2 |  |-  ( ( B e. RR /\ 0 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) | 
						
							| 63 | 54 55 56 61 62 | syl112anc |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) | 
						
							| 64 | 56 | recnd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. CC ) | 
						
							| 65 | 64 | mul01d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( A x. 0 ) = 0 ) | 
						
							| 66 | 65 | breq2d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( ( A x. B ) < ( A x. 0 ) <-> ( A x. B ) < 0 ) ) | 
						
							| 67 | 63 66 | bitrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < 0 ) ) | 
						
							| 68 | 67 | ifbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) | 
						
							| 69 | 53 68 | eqtrid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) | 
						
							| 70 | 50 69 | eqtr2d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 71 | 47 70 | pm2.61dan |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) | 
						
							| 73 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> N < 0 ) | 
						
							| 74 | 73 | biantrurd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( ( A x. B ) < 0 <-> ( N < 0 /\ ( A x. B ) < 0 ) ) ) | 
						
							| 75 | 74 | ifbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) ) | 
						
							| 76 | 73 | biantrurd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( A < 0 <-> ( N < 0 /\ A < 0 ) ) ) | 
						
							| 77 | 76 | ifbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( A < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) | 
						
							| 78 | 73 | biantrurd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( B < 0 <-> ( N < 0 /\ B < 0 ) ) ) | 
						
							| 79 | 78 | ifbid |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) | 
						
							| 80 | 77 79 | oveq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 81 | 72 75 80 | 3eqtr3d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 82 |  | simpr |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. N < 0 ) | 
						
							| 83 | 82 | intnanrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ ( A x. B ) < 0 ) ) | 
						
							| 84 | 83 | iffalsed |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 85 |  | 1t1e1 |  |-  ( 1 x. 1 ) = 1 | 
						
							| 86 | 84 85 | eqtr4di |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( 1 x. 1 ) ) | 
						
							| 87 | 82 | intnanrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ A < 0 ) ) | 
						
							| 88 | 87 | iffalsed |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 89 | 82 | intnanrd |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ B < 0 ) ) | 
						
							| 90 | 89 | iffalsed |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) = 1 ) | 
						
							| 91 | 88 90 | oveq12d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) = ( 1 x. 1 ) ) | 
						
							| 92 | 86 91 | eqtr4d |  |-  ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) | 
						
							| 93 | 81 92 | pm2.61dan |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |