Step |
Hyp |
Ref |
Expression |
1 |
|
simplrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B =/= 0 ) |
2 |
1
|
biantrud |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
3 |
|
0re |
|- 0 e. RR |
4 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. ZZ ) |
5 |
4
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR ) |
6 |
5
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. RR ) |
7 |
|
ltlen |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
8 |
3 6 7
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
9 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. ZZ ) |
10 |
9
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR ) |
11 |
10
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. RR ) |
12 |
11
|
renegcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. RR ) |
13 |
12
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. CC ) |
14 |
13
|
mul01d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. 0 ) = 0 ) |
15 |
11
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. CC ) |
16 |
6
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. CC ) |
17 |
15 16
|
mulneg1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. B ) = -u ( A x. B ) ) |
18 |
14 17
|
breq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( -u A x. 0 ) < ( -u A x. B ) <-> 0 < -u ( A x. B ) ) ) |
19 |
|
0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 e. RR ) |
20 |
10
|
lt0neg1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A < 0 <-> 0 < -u A ) ) |
21 |
20
|
biimpa |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 < -u A ) |
22 |
|
ltmul2 |
|- ( ( 0 e. RR /\ B e. RR /\ ( -u A e. RR /\ 0 < -u A ) ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) |
23 |
19 6 12 21 22
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) |
24 |
10 5
|
remulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) |
25 |
24
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( A x. B ) e. RR ) |
26 |
25
|
lt0neg1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
27 |
18 23 26
|
3bitr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( A x. B ) < 0 ) ) |
28 |
2 8 27
|
3bitr2rd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 <_ B ) ) |
29 |
|
lenlt |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> -. B < 0 ) ) |
30 |
3 6 29
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> -. B < 0 ) ) |
31 |
28 30
|
bitrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> -. B < 0 ) ) |
32 |
31
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( -. B < 0 , -u 1 , 1 ) ) |
33 |
|
oveq2 |
|- ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. -u 1 ) ) |
34 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
35 |
33 34
|
eqtrdi |
|- ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = 1 ) |
36 |
|
oveq2 |
|- ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. 1 ) ) |
37 |
|
ax-1cn |
|- 1 e. CC |
38 |
37
|
mulm1i |
|- ( -u 1 x. 1 ) = -u 1 |
39 |
36 38
|
eqtrdi |
|- ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = -u 1 ) |
40 |
35 39
|
ifsb |
|- ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , 1 , -u 1 ) |
41 |
|
ifnot |
|- if ( -. B < 0 , -u 1 , 1 ) = if ( B < 0 , 1 , -u 1 ) |
42 |
40 41
|
eqtr4i |
|- ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( -. B < 0 , -u 1 , 1 ) |
43 |
32 42
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
44 |
|
iftrue |
|- ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) |
45 |
44
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) |
46 |
45
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
47 |
43 46
|
eqtr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
48 |
|
iffalse |
|- ( -. A < 0 -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
49 |
48
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
50 |
49
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
51 |
|
neg1cn |
|- -u 1 e. CC |
52 |
51 37
|
ifcli |
|- if ( B < 0 , -u 1 , 1 ) e. CC |
53 |
52
|
mulid2i |
|- ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , -u 1 , 1 ) |
54 |
5
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> B e. RR ) |
55 |
|
0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 e. RR ) |
56 |
10
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. RR ) |
57 |
|
lenlt |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
58 |
3 10 57
|
sylancr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( 0 <_ A <-> -. A < 0 ) ) |
59 |
58
|
biimpar |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 <_ A ) |
60 |
|
simplrl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A =/= 0 ) |
61 |
56 59 60
|
ne0gt0d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 < A ) |
62 |
|
ltmul2 |
|- ( ( B e. RR /\ 0 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) |
63 |
54 55 56 61 62
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) |
64 |
56
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. CC ) |
65 |
64
|
mul01d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( A x. 0 ) = 0 ) |
66 |
65
|
breq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( ( A x. B ) < ( A x. 0 ) <-> ( A x. B ) < 0 ) ) |
67 |
63 66
|
bitrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < 0 ) ) |
68 |
67
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) |
69 |
53 68
|
eqtrid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) |
70 |
50 69
|
eqtr2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
71 |
47 70
|
pm2.61dan |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
72 |
71
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
73 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> N < 0 ) |
74 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( ( A x. B ) < 0 <-> ( N < 0 /\ ( A x. B ) < 0 ) ) ) |
75 |
74
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) ) |
76 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( A < 0 <-> ( N < 0 /\ A < 0 ) ) ) |
77 |
76
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( A < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) |
78 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( B < 0 <-> ( N < 0 /\ B < 0 ) ) ) |
79 |
78
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) |
80 |
77 79
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
81 |
72 75 80
|
3eqtr3d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
82 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. N < 0 ) |
83 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ ( A x. B ) < 0 ) ) |
84 |
83
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = 1 ) |
85 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
86 |
84 85
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( 1 x. 1 ) ) |
87 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ A < 0 ) ) |
88 |
87
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) |
89 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ B < 0 ) ) |
90 |
89
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) = 1 ) |
91 |
88 90
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) = ( 1 x. 1 ) ) |
92 |
86 91
|
eqtr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
93 |
81 92
|
pm2.61dan |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |