| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simplrr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B =/= 0 ) |
| 2 |
1
|
biantrud |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
| 3 |
|
0re |
|- 0 e. RR |
| 4 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. ZZ ) |
| 5 |
4
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. RR ) |
| 6 |
5
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. RR ) |
| 7 |
|
ltlen |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
| 8 |
3 6 7
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( 0 <_ B /\ B =/= 0 ) ) ) |
| 9 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. ZZ ) |
| 10 |
9
|
zred |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. RR ) |
| 11 |
10
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. RR ) |
| 12 |
11
|
renegcld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. RR ) |
| 13 |
12
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> -u A e. CC ) |
| 14 |
13
|
mul01d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. 0 ) = 0 ) |
| 15 |
11
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> A e. CC ) |
| 16 |
6
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> B e. CC ) |
| 17 |
15 16
|
mulneg1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( -u A x. B ) = -u ( A x. B ) ) |
| 18 |
14 17
|
breq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( -u A x. 0 ) < ( -u A x. B ) <-> 0 < -u ( A x. B ) ) ) |
| 19 |
|
0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 e. RR ) |
| 20 |
10
|
lt0neg1d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A < 0 <-> 0 < -u A ) ) |
| 21 |
20
|
biimpa |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> 0 < -u A ) |
| 22 |
|
ltmul2 |
|- ( ( 0 e. RR /\ B e. RR /\ ( -u A e. RR /\ 0 < -u A ) ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) |
| 23 |
19 6 12 21 22
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( -u A x. 0 ) < ( -u A x. B ) ) ) |
| 24 |
10 5
|
remulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. RR ) |
| 25 |
24
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( A x. B ) e. RR ) |
| 26 |
25
|
lt0neg1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
| 27 |
18 23 26
|
3bitr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 < B <-> ( A x. B ) < 0 ) ) |
| 28 |
2 8 27
|
3bitr2rd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> 0 <_ B ) ) |
| 29 |
|
lenlt |
|- ( ( 0 e. RR /\ B e. RR ) -> ( 0 <_ B <-> -. B < 0 ) ) |
| 30 |
3 6 29
|
sylancr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( 0 <_ B <-> -. B < 0 ) ) |
| 31 |
28 30
|
bitrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( ( A x. B ) < 0 <-> -. B < 0 ) ) |
| 32 |
31
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( -. B < 0 , -u 1 , 1 ) ) |
| 33 |
|
oveq2 |
|- ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. -u 1 ) ) |
| 34 |
|
neg1mulneg1e1 |
|- ( -u 1 x. -u 1 ) = 1 |
| 35 |
33 34
|
eqtrdi |
|- ( if ( B < 0 , -u 1 , 1 ) = -u 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = 1 ) |
| 36 |
|
oveq2 |
|- ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. 1 ) ) |
| 37 |
|
ax-1cn |
|- 1 e. CC |
| 38 |
37
|
mulm1i |
|- ( -u 1 x. 1 ) = -u 1 |
| 39 |
36 38
|
eqtrdi |
|- ( if ( B < 0 , -u 1 , 1 ) = 1 -> ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = -u 1 ) |
| 40 |
35 39
|
ifsb |
|- ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , 1 , -u 1 ) |
| 41 |
|
ifnot |
|- if ( -. B < 0 , -u 1 , 1 ) = if ( B < 0 , 1 , -u 1 ) |
| 42 |
40 41
|
eqtr4i |
|- ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( -. B < 0 , -u 1 , 1 ) |
| 43 |
32 42
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 44 |
|
iftrue |
|- ( A < 0 -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) |
| 45 |
44
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = -u 1 ) |
| 46 |
45
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( -u 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 47 |
43 46
|
eqtr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 48 |
|
iffalse |
|- ( -. A < 0 -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
| 49 |
48
|
adantl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( A < 0 , -u 1 , 1 ) = 1 ) |
| 50 |
49
|
oveq1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( 1 x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 51 |
|
neg1cn |
|- -u 1 e. CC |
| 52 |
51 37
|
ifcli |
|- if ( B < 0 , -u 1 , 1 ) e. CC |
| 53 |
52
|
mullidi |
|- ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( B < 0 , -u 1 , 1 ) |
| 54 |
5
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> B e. RR ) |
| 55 |
|
0red |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 e. RR ) |
| 56 |
10
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. RR ) |
| 57 |
|
lenlt |
|- ( ( 0 e. RR /\ A e. RR ) -> ( 0 <_ A <-> -. A < 0 ) ) |
| 58 |
3 10 57
|
sylancr |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( 0 <_ A <-> -. A < 0 ) ) |
| 59 |
58
|
biimpar |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 <_ A ) |
| 60 |
|
simplrl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A =/= 0 ) |
| 61 |
56 59 60
|
ne0gt0d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> 0 < A ) |
| 62 |
|
ltmul2 |
|- ( ( B e. RR /\ 0 e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) |
| 63 |
54 55 56 61 62
|
syl112anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < ( A x. 0 ) ) ) |
| 64 |
56
|
recnd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> A e. CC ) |
| 65 |
64
|
mul01d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( A x. 0 ) = 0 ) |
| 66 |
65
|
breq2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( ( A x. B ) < ( A x. 0 ) <-> ( A x. B ) < 0 ) ) |
| 67 |
63 66
|
bitrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( B < 0 <-> ( A x. B ) < 0 ) ) |
| 68 |
67
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) |
| 69 |
53 68
|
eqtrid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> ( 1 x. if ( B < 0 , -u 1 , 1 ) ) = if ( ( A x. B ) < 0 , -u 1 , 1 ) ) |
| 70 |
50 69
|
eqtr2d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. A < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 71 |
47 70
|
pm2.61dan |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 72 |
71
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) ) |
| 73 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> N < 0 ) |
| 74 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( ( A x. B ) < 0 <-> ( N < 0 /\ ( A x. B ) < 0 ) ) ) |
| 75 |
74
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( A x. B ) < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) ) |
| 76 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( A < 0 <-> ( N < 0 /\ A < 0 ) ) ) |
| 77 |
76
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( A < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) |
| 78 |
73
|
biantrurd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( B < 0 <-> ( N < 0 /\ B < 0 ) ) ) |
| 79 |
78
|
ifbid |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( B < 0 , -u 1 , 1 ) = if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) |
| 80 |
77 79
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> ( if ( A < 0 , -u 1 , 1 ) x. if ( B < 0 , -u 1 , 1 ) ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
| 81 |
72 75 80
|
3eqtr3d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
| 82 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. N < 0 ) |
| 83 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ ( A x. B ) < 0 ) ) |
| 84 |
83
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = 1 ) |
| 85 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 86 |
84 85
|
eqtr4di |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( 1 x. 1 ) ) |
| 87 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ A < 0 ) ) |
| 88 |
87
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) = 1 ) |
| 89 |
82
|
intnanrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> -. ( N < 0 /\ B < 0 ) ) |
| 90 |
89
|
iffalsed |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) = 1 ) |
| 91 |
88 90
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) = ( 1 x. 1 ) ) |
| 92 |
86 91
|
eqtr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ -. N < 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
| 93 |
81 92
|
pm2.61dan |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |