| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ax-1cn |
|- 1 e. CC |
| 2 |
|
0cn |
|- 0 e. CC |
| 3 |
1 2
|
ifcli |
|- if ( ( B ^ 2 ) = 1 , 1 , 0 ) e. CC |
| 4 |
3
|
mullidi |
|- ( 1 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) |
| 5 |
|
iftrue |
|- ( ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 1 ) |
| 6 |
5
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 1 ) |
| 7 |
6
|
oveq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = ( 1 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) |
| 8 |
|
simpl1 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. ZZ ) |
| 9 |
8
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A e. CC ) |
| 10 |
9
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> A e. CC ) |
| 11 |
|
simpl2 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. ZZ ) |
| 12 |
11
|
zcnd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> B e. CC ) |
| 13 |
12
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> B e. CC ) |
| 14 |
10 13
|
sqmuld |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A x. B ) ^ 2 ) = ( ( A ^ 2 ) x. ( B ^ 2 ) ) ) |
| 15 |
|
simpr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( A ^ 2 ) = 1 ) |
| 16 |
15
|
oveq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A ^ 2 ) x. ( B ^ 2 ) ) = ( 1 x. ( B ^ 2 ) ) ) |
| 17 |
12
|
sqcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B ^ 2 ) e. CC ) |
| 18 |
17
|
ad2antrr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( B ^ 2 ) e. CC ) |
| 19 |
18
|
mullidd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( 1 x. ( B ^ 2 ) ) = ( B ^ 2 ) ) |
| 20 |
14 16 19
|
3eqtrd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( A x. B ) ^ 2 ) = ( B ^ 2 ) ) |
| 21 |
20
|
eqeq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( ( ( A x. B ) ^ 2 ) = 1 <-> ( B ^ 2 ) = 1 ) ) |
| 22 |
21
|
ifbid |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) |
| 23 |
4 7 22
|
3eqtr4a |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 24 |
3
|
mul02i |
|- ( 0 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = 0 |
| 25 |
|
iffalse |
|- ( -. ( A ^ 2 ) = 1 -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 0 ) |
| 26 |
25
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> if ( ( A ^ 2 ) = 1 , 1 , 0 ) = 0 ) |
| 27 |
26
|
oveq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = ( 0 x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) |
| 28 |
|
dvdsmul1 |
|- ( ( A e. ZZ /\ B e. ZZ ) -> A || ( A x. B ) ) |
| 29 |
8 11 28
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A || ( A x. B ) ) |
| 30 |
8 11
|
zmulcld |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A x. B ) e. ZZ ) |
| 31 |
|
dvdssq |
|- ( ( A e. ZZ /\ ( A x. B ) e. ZZ ) -> ( A || ( A x. B ) <-> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) ) |
| 32 |
8 30 31
|
syl2anc |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A || ( A x. B ) <-> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) ) |
| 33 |
29 32
|
mpbid |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) |
| 34 |
33
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) ) |
| 35 |
|
breq2 |
|- ( ( ( A x. B ) ^ 2 ) = 1 -> ( ( A ^ 2 ) || ( ( A x. B ) ^ 2 ) <-> ( A ^ 2 ) || 1 ) ) |
| 36 |
34 35
|
syl5ibcom |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( ( A x. B ) ^ 2 ) = 1 -> ( A ^ 2 ) || 1 ) ) |
| 37 |
|
simprl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> A =/= 0 ) |
| 38 |
37
|
neneqd |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> -. A = 0 ) |
| 39 |
|
sqeq0 |
|- ( A e. CC -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
| 40 |
9 39
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^ 2 ) = 0 <-> A = 0 ) ) |
| 41 |
38 40
|
mtbird |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> -. ( A ^ 2 ) = 0 ) |
| 42 |
|
zsqcl2 |
|- ( A e. ZZ -> ( A ^ 2 ) e. NN0 ) |
| 43 |
8 42
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) e. NN0 ) |
| 44 |
|
elnn0 |
|- ( ( A ^ 2 ) e. NN0 <-> ( ( A ^ 2 ) e. NN \/ ( A ^ 2 ) = 0 ) ) |
| 45 |
43 44
|
sylib |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A ^ 2 ) e. NN \/ ( A ^ 2 ) = 0 ) ) |
| 46 |
45
|
ord |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( -. ( A ^ 2 ) e. NN -> ( A ^ 2 ) = 0 ) ) |
| 47 |
41 46
|
mt3d |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A ^ 2 ) e. NN ) |
| 48 |
47
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. NN ) |
| 49 |
48
|
nnzd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. ZZ ) |
| 50 |
|
1nn |
|- 1 e. NN |
| 51 |
|
dvdsle |
|- ( ( ( A ^ 2 ) e. ZZ /\ 1 e. NN ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) <_ 1 ) ) |
| 52 |
49 50 51
|
sylancl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) <_ 1 ) ) |
| 53 |
48
|
nnge1d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> 1 <_ ( A ^ 2 ) ) |
| 54 |
52 53
|
jctird |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) |
| 55 |
48
|
nnred |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A ^ 2 ) e. RR ) |
| 56 |
|
1re |
|- 1 e. RR |
| 57 |
|
letri3 |
|- ( ( ( A ^ 2 ) e. RR /\ 1 e. RR ) -> ( ( A ^ 2 ) = 1 <-> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) |
| 58 |
55 56 57
|
sylancl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) = 1 <-> ( ( A ^ 2 ) <_ 1 /\ 1 <_ ( A ^ 2 ) ) ) ) |
| 59 |
54 58
|
sylibrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A ^ 2 ) || 1 -> ( A ^ 2 ) = 1 ) ) |
| 60 |
36 59
|
syld |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( ( A x. B ) ^ 2 ) = 1 -> ( A ^ 2 ) = 1 ) ) |
| 61 |
60
|
con3dimp |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> -. ( ( A x. B ) ^ 2 ) = 1 ) |
| 62 |
61
|
iffalsed |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) = 0 ) |
| 63 |
24 27 62
|
3eqtr4a |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) /\ -. ( A ^ 2 ) = 1 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 64 |
23 63
|
pm2.61dan |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 65 |
|
oveq2 |
|- ( N = 0 -> ( A /L N ) = ( A /L 0 ) ) |
| 66 |
|
lgs0 |
|- ( A e. ZZ -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
| 67 |
8 66
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
| 68 |
65 67
|
sylan9eqr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( A /L N ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
| 69 |
|
oveq2 |
|- ( N = 0 -> ( B /L N ) = ( B /L 0 ) ) |
| 70 |
|
lgs0 |
|- ( B e. ZZ -> ( B /L 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) |
| 71 |
11 70
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( B /L 0 ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) |
| 72 |
69 71
|
sylan9eqr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( B /L N ) = if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) |
| 73 |
68 72
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( if ( ( A ^ 2 ) = 1 , 1 , 0 ) x. if ( ( B ^ 2 ) = 1 , 1 , 0 ) ) ) |
| 74 |
|
oveq2 |
|- ( N = 0 -> ( ( A x. B ) /L N ) = ( ( A x. B ) /L 0 ) ) |
| 75 |
|
lgs0 |
|- ( ( A x. B ) e. ZZ -> ( ( A x. B ) /L 0 ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 76 |
30 75
|
syl |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L 0 ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 77 |
74 76
|
sylan9eqr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A x. B ) /L N ) = if ( ( ( A x. B ) ^ 2 ) = 1 , 1 , 0 ) ) |
| 78 |
64 73 77
|
3eqtr4rd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N = 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
| 79 |
|
lgsdilem |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
| 80 |
79
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) ) |
| 81 |
|
simpl3 |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> N e. ZZ ) |
| 82 |
|
nnabscl |
|- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 83 |
81 82
|
sylan |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( abs ` N ) e. NN ) |
| 84 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 85 |
83 84
|
eleqtrdi |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( abs ` N ) e. ( ZZ>= ` 1 ) ) |
| 86 |
|
simpll1 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> A e. ZZ ) |
| 87 |
|
simpll3 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> N e. ZZ ) |
| 88 |
|
simpr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> N =/= 0 ) |
| 89 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
| 90 |
89
|
lgsfcl3 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 91 |
86 87 88 90
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 92 |
|
elfznn |
|- ( k e. ( 1 ... ( abs ` N ) ) -> k e. NN ) |
| 93 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 94 |
91 92 93
|
syl2an |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 95 |
94
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
| 96 |
|
simpll2 |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> B e. ZZ ) |
| 97 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
| 98 |
97
|
lgsfcl3 |
|- ( ( B e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 99 |
96 87 88 98
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ ) |
| 100 |
|
ffvelcdm |
|- ( ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) : NN --> ZZ /\ k e. NN ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 101 |
99 92 100
|
syl2an |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. ZZ ) |
| 102 |
101
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) e. CC ) |
| 103 |
86
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> A e. ZZ ) |
| 104 |
96
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> B e. ZZ ) |
| 105 |
|
simpr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> k e. Prime ) |
| 106 |
|
lgsdirprm |
|- ( ( A e. ZZ /\ B e. ZZ /\ k e. Prime ) -> ( ( A x. B ) /L k ) = ( ( A /L k ) x. ( B /L k ) ) ) |
| 107 |
103 104 105 106
|
syl3anc |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( A x. B ) /L k ) = ( ( A /L k ) x. ( B /L k ) ) ) |
| 108 |
107
|
oveq1d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) x. ( B /L k ) ) ^ ( k pCnt N ) ) ) |
| 109 |
|
prmz |
|- ( k e. Prime -> k e. ZZ ) |
| 110 |
|
lgscl |
|- ( ( A e. ZZ /\ k e. ZZ ) -> ( A /L k ) e. ZZ ) |
| 111 |
86 109 110
|
syl2an |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( A /L k ) e. ZZ ) |
| 112 |
111
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( A /L k ) e. CC ) |
| 113 |
|
lgscl |
|- ( ( B e. ZZ /\ k e. ZZ ) -> ( B /L k ) e. ZZ ) |
| 114 |
96 109 113
|
syl2an |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( B /L k ) e. ZZ ) |
| 115 |
114
|
zcnd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( B /L k ) e. CC ) |
| 116 |
87
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> N e. ZZ ) |
| 117 |
88
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> N =/= 0 ) |
| 118 |
|
pczcl |
|- ( ( k e. Prime /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( k pCnt N ) e. NN0 ) |
| 119 |
105 116 117 118
|
syl12anc |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( k pCnt N ) e. NN0 ) |
| 120 |
112 115 119
|
mulexpd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A /L k ) x. ( B /L k ) ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) |
| 121 |
108 120
|
eqtrd |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) |
| 122 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) |
| 123 |
122
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) |
| 124 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) |
| 125 |
|
iftrue |
|- ( k e. Prime -> if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) = ( ( B /L k ) ^ ( k pCnt N ) ) ) |
| 126 |
124 125
|
oveq12d |
|- ( k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) |
| 127 |
126
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( ( ( A /L k ) ^ ( k pCnt N ) ) x. ( ( B /L k ) ^ ( k pCnt N ) ) ) ) |
| 128 |
121 123 127
|
3eqtr4d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 129 |
|
1t1e1 |
|- ( 1 x. 1 ) = 1 |
| 130 |
129
|
eqcomi |
|- 1 = ( 1 x. 1 ) |
| 131 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) |
| 132 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) |
| 133 |
|
iffalse |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) = 1 ) |
| 134 |
132 133
|
oveq12d |
|- ( -. k e. Prime -> ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) = ( 1 x. 1 ) ) |
| 135 |
130 131 134
|
3eqtr4a |
|- ( -. k e. Prime -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 136 |
135
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ -. k e. Prime ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 137 |
128 136
|
pm2.61dan |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 138 |
137
|
adantr |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 139 |
92
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> k e. NN ) |
| 140 |
|
eleq1w |
|- ( n = k -> ( n e. Prime <-> k e. Prime ) ) |
| 141 |
|
oveq2 |
|- ( n = k -> ( ( A x. B ) /L n ) = ( ( A x. B ) /L k ) ) |
| 142 |
|
oveq1 |
|- ( n = k -> ( n pCnt N ) = ( k pCnt N ) ) |
| 143 |
141 142
|
oveq12d |
|- ( n = k -> ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) = ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) ) |
| 144 |
140 143
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 145 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) |
| 146 |
|
ovex |
|- ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) e. _V |
| 147 |
|
1ex |
|- 1 e. _V |
| 148 |
146 147
|
ifex |
|- if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V |
| 149 |
144 145 148
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 150 |
139 149
|
syl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( ( A x. B ) /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 151 |
|
oveq2 |
|- ( n = k -> ( A /L n ) = ( A /L k ) ) |
| 152 |
151 142
|
oveq12d |
|- ( n = k -> ( ( A /L n ) ^ ( n pCnt N ) ) = ( ( A /L k ) ^ ( k pCnt N ) ) ) |
| 153 |
140 152
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 154 |
|
ovex |
|- ( ( A /L k ) ^ ( k pCnt N ) ) e. _V |
| 155 |
154 147
|
ifex |
|- if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V |
| 156 |
153 89 155
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 157 |
139 156
|
syl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 158 |
|
oveq2 |
|- ( n = k -> ( B /L n ) = ( B /L k ) ) |
| 159 |
158 142
|
oveq12d |
|- ( n = k -> ( ( B /L n ) ^ ( n pCnt N ) ) = ( ( B /L k ) ^ ( k pCnt N ) ) ) |
| 160 |
140 159
|
ifbieq1d |
|- ( n = k -> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 161 |
|
ovex |
|- ( ( B /L k ) ^ ( k pCnt N ) ) e. _V |
| 162 |
161 147
|
ifex |
|- if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) e. _V |
| 163 |
160 97 162
|
fvmpt |
|- ( k e. NN -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 164 |
139 163
|
syl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) |
| 165 |
157 164
|
oveq12d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) = ( if ( k e. Prime , ( ( A /L k ) ^ ( k pCnt N ) ) , 1 ) x. if ( k e. Prime , ( ( B /L k ) ^ ( k pCnt N ) ) , 1 ) ) ) |
| 166 |
138 150 165
|
3eqtr4d |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ k e. ( 1 ... ( abs ` N ) ) ) -> ( ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) = ( ( ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) x. ( ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ` k ) ) ) |
| 167 |
85 95 102 166
|
prodfmul |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) = ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 168 |
80 167
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 169 |
30
|
adantr |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( A x. B ) e. ZZ ) |
| 170 |
145
|
lgsval4 |
|- ( ( ( A x. B ) e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 171 |
169 87 88 170
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( if ( ( N < 0 /\ ( A x. B ) < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( ( A x. B ) /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 172 |
89
|
lgsval4 |
|- ( ( A e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 173 |
86 87 88 172
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( A /L N ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 174 |
97
|
lgsval4 |
|- ( ( B e. ZZ /\ N e. ZZ /\ N =/= 0 ) -> ( B /L N ) = ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 175 |
96 87 88 174
|
syl3anc |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( B /L N ) = ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) |
| 176 |
173 175
|
oveq12d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) x. ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 177 |
|
neg1cn |
|- -u 1 e. CC |
| 178 |
177 1
|
ifcli |
|- if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC |
| 179 |
178
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) e. CC ) |
| 180 |
|
mulcl |
|- ( ( k e. CC /\ x e. CC ) -> ( k x. x ) e. CC ) |
| 181 |
180
|
adantl |
|- ( ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) /\ ( k e. CC /\ x e. CC ) ) -> ( k x. x ) e. CC ) |
| 182 |
85 95 181
|
seqcl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) |
| 183 |
177 1
|
ifcli |
|- if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) e. CC |
| 184 |
183
|
a1i |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) e. CC ) |
| 185 |
85 102 181
|
seqcl |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) e. CC ) |
| 186 |
179 182 184 185
|
mul4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) x. ( if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 187 |
176 186
|
eqtrd |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A /L N ) x. ( B /L N ) ) = ( ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. if ( ( N < 0 /\ B < 0 ) , -u 1 , 1 ) ) x. ( ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( A /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( ( B /L n ) ^ ( n pCnt N ) ) , 1 ) ) ) ` ( abs ` N ) ) ) ) ) |
| 188 |
168 171 187
|
3eqtr4d |
|- ( ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) /\ N =/= 0 ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |
| 189 |
78 188
|
pm2.61dane |
|- ( ( ( A e. ZZ /\ B e. ZZ /\ N e. ZZ ) /\ ( A =/= 0 /\ B =/= 0 ) ) -> ( ( A x. B ) /L N ) = ( ( A /L N ) x. ( B /L N ) ) ) |