Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
eqid |
|- ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) |
3 |
2
|
lgsval |
|- ( ( A e. ZZ /\ 0 e. ZZ ) -> ( A /L 0 ) = if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) ) |
4 |
1 3
|
mpan2 |
|- ( A e. ZZ -> ( A /L 0 ) = if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) ) |
5 |
|
eqid |
|- 0 = 0 |
6 |
5
|
iftruei |
|- if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) |
7 |
4 6
|
eqtrdi |
|- ( A e. ZZ -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |