| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z |  |-  0 e. ZZ | 
						
							| 2 |  | eqid |  |-  ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) | 
						
							| 3 | 2 | lgsval |  |-  ( ( A e. ZZ /\ 0 e. ZZ ) -> ( A /L 0 ) = if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) ) | 
						
							| 4 | 1 3 | mpan2 |  |-  ( A e. ZZ -> ( A /L 0 ) = if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) ) | 
						
							| 5 |  | eqid |  |-  0 = 0 | 
						
							| 6 | 5 | iftruei |  |-  if ( 0 = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt 0 ) ) , 1 ) ) ) ` ( abs ` 0 ) ) ) ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) | 
						
							| 7 | 4 6 | eqtrdi |  |-  ( A e. ZZ -> ( A /L 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |