Metamath Proof Explorer


Theorem lgs0

Description: The Legendre symbol when the second argument is zero. (Contributed by Mario Carneiro, 4-Feb-2015)

Ref Expression
Assertion lgs0 AA/L0=ifA2=110

Proof

Step Hyp Ref Expression
1 0z 0
2 eqid nifnifn=2if2A0ifAmod81711An12+1modn1npCnt01=nifnifn=2if2A0ifAmod81711An12+1modn1npCnt01
3 2 lgsval A0A/L0=if0=0ifA2=110if0<0A<011seq1×nifnifn=2if2A0ifAmod81711An12+1modn1npCnt010
4 1 3 mpan2 AA/L0=if0=0ifA2=110if0<0A<011seq1×nifnifn=2if2A0ifAmod81711An12+1modn1npCnt010
5 eqid 0=0
6 5 iftruei if0=0ifA2=110if0<0A<011seq1×nifnifn=2if2A0ifAmod81711An12+1modn1npCnt010=ifA2=110
7 4 6 eqtrdi AA/L0=ifA2=110