Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 0 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 0 ) ) , 1 ) ) |
3 |
2
|
lgsval |
⊢ ( ( 𝐴 ∈ ℤ ∧ 0 ∈ ℤ ) → ( 𝐴 /L 0 ) = if ( 0 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 0 ) ) , 1 ) ) ) ‘ ( abs ‘ 0 ) ) ) ) ) |
4 |
1 3
|
mpan2 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 0 ) = if ( 0 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 0 ) ) , 1 ) ) ) ‘ ( abs ‘ 0 ) ) ) ) ) |
5 |
|
eqid |
⊢ 0 = 0 |
6 |
5
|
iftruei |
⊢ if ( 0 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 0 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 0 ) ) , 1 ) ) ) ‘ ( abs ‘ 0 ) ) ) ) = if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) |
7 |
4 6
|
eqtrdi |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 /L 0 ) = if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ) |