| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | eqid | ⊢ ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  0 ) ) ,  1 ) )  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  0 ) ) ,  1 ) ) | 
						
							| 3 | 2 | lgsval | ⊢ ( ( 𝐴  ∈  ℤ  ∧  0  ∈  ℤ )  →  ( 𝐴  /L  0 )  =  if ( 0  =  0 ,  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 0  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  0 ) ) ,  1 ) ) ) ‘ ( abs ‘ 0 ) ) ) ) ) | 
						
							| 4 | 1 3 | mpan2 | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  /L  0 )  =  if ( 0  =  0 ,  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 0  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  0 ) ) ,  1 ) ) ) ‘ ( abs ‘ 0 ) ) ) ) ) | 
						
							| 5 |  | eqid | ⊢ 0  =  0 | 
						
							| 6 | 5 | iftruei | ⊢ if ( 0  =  0 ,  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( 0  <  0  ∧  𝐴  <  0 ) ,  - 1 ,  1 )  ·  ( seq 1 (  ·  ,  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  0 ) ) ,  1 ) ) ) ‘ ( abs ‘ 0 ) ) ) )  =  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) | 
						
							| 7 | 4 6 | eqtrdi | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  /L  0 )  =  if ( ( 𝐴 ↑ 2 )  =  1 ,  1 ,  0 ) ) |