Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
⊢ 𝐹 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
2 |
|
simpr |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → 𝑚 = 𝑁 ) |
3 |
2
|
eqeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑚 = 0 ↔ 𝑁 = 0 ) ) |
4 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → 𝑎 = 𝐴 ) |
5 |
4
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑎 ↑ 2 ) = ( 𝐴 ↑ 2 ) ) |
6 |
5
|
eqeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( 𝑎 ↑ 2 ) = 1 ↔ ( 𝐴 ↑ 2 ) = 1 ) ) |
7 |
6
|
ifbid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) = if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ) |
8 |
2
|
breq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑚 < 0 ↔ 𝑁 < 0 ) ) |
9 |
4
|
breq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑎 < 0 ↔ 𝐴 < 0 ) ) |
10 |
8 9
|
anbi12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( 𝑚 < 0 ∧ 𝑎 < 0 ) ↔ ( 𝑁 < 0 ∧ 𝐴 < 0 ) ) ) |
11 |
10
|
ifbid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( ( 𝑚 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) = if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) ) |
12 |
4
|
breq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 2 ∥ 𝑎 ↔ 2 ∥ 𝐴 ) ) |
13 |
4
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑎 mod 8 ) = ( 𝐴 mod 8 ) ) |
14 |
13
|
eleq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } ↔ ( 𝐴 mod 8 ) ∈ { 1 , 7 } ) ) |
15 |
14
|
ifbid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) = if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) |
16 |
12 15
|
ifbieq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) = if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) ) |
17 |
4
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) = ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) = ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) ) |
19 |
18
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) = ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) ) |
20 |
19
|
oveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) = ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) |
21 |
16 20
|
ifeq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) = if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ) |
22 |
2
|
oveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑛 pCnt 𝑚 ) = ( 𝑛 pCnt 𝑁 ) ) |
23 |
21 22
|
oveq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) = ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) ) |
24 |
23
|
ifeq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) = if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) |
25 |
24
|
mpteq2dv |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝐴 , 0 , if ( ( 𝐴 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝐴 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑁 ) ) , 1 ) ) ) |
26 |
25 1
|
eqtr4di |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) = 𝐹 ) |
27 |
26
|
seqeq3d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) ) = seq 1 ( · , 𝐹 ) ) |
28 |
2
|
fveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( abs ‘ 𝑚 ) = ( abs ‘ 𝑁 ) ) |
29 |
27 28
|
fveq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑚 ) ) = ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) |
30 |
11 29
|
oveq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → ( if ( ( 𝑚 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑚 ) ) ) = ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) |
31 |
3 7 30
|
ifbieq12d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑚 = 𝑁 ) → if ( 𝑚 = 0 , if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑚 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑚 ) ) ) ) = if ( 𝑁 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |
32 |
|
df-lgs |
⊢ /L = ( 𝑎 ∈ ℤ , 𝑚 ∈ ℤ ↦ if ( 𝑚 = 0 , if ( ( 𝑎 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑚 < 0 ∧ 𝑎 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( if ( 𝑛 = 2 , if ( 2 ∥ 𝑎 , 0 , if ( ( 𝑎 mod 8 ) ∈ { 1 , 7 } , 1 , - 1 ) ) , ( ( ( ( 𝑎 ↑ ( ( 𝑛 − 1 ) / 2 ) ) + 1 ) mod 𝑛 ) − 1 ) ) ↑ ( 𝑛 pCnt 𝑚 ) ) , 1 ) ) ) ‘ ( abs ‘ 𝑚 ) ) ) ) ) |
33 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
34 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
35 |
33 34
|
ifcli |
⊢ if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ∈ ℕ0 |
36 |
35
|
elexi |
⊢ if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) ∈ V |
37 |
|
ovex |
⊢ ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ∈ V |
38 |
36 37
|
ifex |
⊢ if ( 𝑁 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ∈ V |
39 |
31 32 38
|
ovmpoa |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐴 /L 𝑁 ) = if ( 𝑁 = 0 , if ( ( 𝐴 ↑ 2 ) = 1 , 1 , 0 ) , ( if ( ( 𝑁 < 0 ∧ 𝐴 < 0 ) , - 1 , 1 ) · ( seq 1 ( · , 𝐹 ) ‘ ( abs ‘ 𝑁 ) ) ) ) ) |