| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 | ⊢ 𝐹  =  ( 𝑛  ∈  ℕ  ↦  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 2 |  | eleq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  ∈  ℙ  ↔  𝑀  ∈  ℙ ) ) | 
						
							| 3 |  | eqeq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  =  2  ↔  𝑀  =  2 ) ) | 
						
							| 4 |  | oveq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  −  1 )  =  ( 𝑀  −  1 ) ) | 
						
							| 5 | 4 | oveq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝑛  −  1 )  /  2 )  =  ( ( 𝑀  −  1 )  /  2 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑛  =  𝑀  →  ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  =  ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) ) ) | 
						
							| 7 | 6 | oveq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  =  ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 ) ) | 
						
							| 8 |  | id | ⊢ ( 𝑛  =  𝑀  →  𝑛  =  𝑀 ) | 
						
							| 9 | 7 8 | oveq12d | ⊢ ( 𝑛  =  𝑀  →  ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  =  ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 ) ) | 
						
							| 10 | 9 | oveq1d | ⊢ ( 𝑛  =  𝑀  →  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 )  =  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) | 
						
							| 11 | 3 10 | ifbieq2d | ⊢ ( 𝑛  =  𝑀  →  if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) )  =  if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ) | 
						
							| 12 |  | oveq1 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑛  pCnt  𝑁 )  =  ( 𝑀  pCnt  𝑁 ) ) | 
						
							| 13 | 11 12 | oveq12d | ⊢ ( 𝑛  =  𝑀  →  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) )  =  ( if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ↑ ( 𝑀  pCnt  𝑁 ) ) ) | 
						
							| 14 | 2 13 | ifbieq1d | ⊢ ( 𝑛  =  𝑀  →  if ( 𝑛  ∈  ℙ ,  ( if ( 𝑛  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑛  −  1 )  /  2 ) )  +  1 )  mod  𝑛 )  −  1 ) ) ↑ ( 𝑛  pCnt  𝑁 ) ) ,  1 )  =  if ( 𝑀  ∈  ℙ ,  ( if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ↑ ( 𝑀  pCnt  𝑁 ) ) ,  1 ) ) | 
						
							| 15 |  | ovex | ⊢ ( if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ↑ ( 𝑀  pCnt  𝑁 ) )  ∈  V | 
						
							| 16 |  | 1ex | ⊢ 1  ∈  V | 
						
							| 17 | 15 16 | ifex | ⊢ if ( 𝑀  ∈  ℙ ,  ( if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ↑ ( 𝑀  pCnt  𝑁 ) ) ,  1 )  ∈  V | 
						
							| 18 | 14 1 17 | fvmpt | ⊢ ( 𝑀  ∈  ℕ  →  ( 𝐹 ‘ 𝑀 )  =  if ( 𝑀  ∈  ℙ ,  ( if ( 𝑀  =  2 ,  if ( 2  ∥  𝐴 ,  0 ,  if ( ( 𝐴  mod  8 )  ∈  { 1 ,  7 } ,  1 ,  - 1 ) ) ,  ( ( ( ( 𝐴 ↑ ( ( 𝑀  −  1 )  /  2 ) )  +  1 )  mod  𝑀 )  −  1 ) ) ↑ ( 𝑀  pCnt  𝑁 ) ) ,  1 ) ) |