| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lgsval.1 |  |-  F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) | 
						
							| 2 |  | eleq1 |  |-  ( n = M -> ( n e. Prime <-> M e. Prime ) ) | 
						
							| 3 |  | eqeq1 |  |-  ( n = M -> ( n = 2 <-> M = 2 ) ) | 
						
							| 4 |  | oveq1 |  |-  ( n = M -> ( n - 1 ) = ( M - 1 ) ) | 
						
							| 5 | 4 | oveq1d |  |-  ( n = M -> ( ( n - 1 ) / 2 ) = ( ( M - 1 ) / 2 ) ) | 
						
							| 6 | 5 | oveq2d |  |-  ( n = M -> ( A ^ ( ( n - 1 ) / 2 ) ) = ( A ^ ( ( M - 1 ) / 2 ) ) ) | 
						
							| 7 | 6 | oveq1d |  |-  ( n = M -> ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) = ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) ) | 
						
							| 8 |  | id |  |-  ( n = M -> n = M ) | 
						
							| 9 | 7 8 | oveq12d |  |-  ( n = M -> ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) = ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) ) | 
						
							| 10 | 9 | oveq1d |  |-  ( n = M -> ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) = ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) | 
						
							| 11 | 3 10 | ifbieq2d |  |-  ( n = M -> if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) = if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ) | 
						
							| 12 |  | oveq1 |  |-  ( n = M -> ( n pCnt N ) = ( M pCnt N ) ) | 
						
							| 13 | 11 12 | oveq12d |  |-  ( n = M -> ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) = ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) ) | 
						
							| 14 | 2 13 | ifbieq1d |  |-  ( n = M -> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) = if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) ) | 
						
							| 15 |  | ovex |  |-  ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) e. _V | 
						
							| 16 |  | 1ex |  |-  1 e. _V | 
						
							| 17 | 15 16 | ifex |  |-  if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) e. _V | 
						
							| 18 | 14 1 17 | fvmpt |  |-  ( M e. NN -> ( F ` M ) = if ( M e. Prime , ( if ( M = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( M - 1 ) / 2 ) ) + 1 ) mod M ) - 1 ) ) ^ ( M pCnt N ) ) , 1 ) ) |