Step |
Hyp |
Ref |
Expression |
1 |
|
lgsval.1 |
|- F = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
2 |
|
simpr |
|- ( ( a = A /\ m = N ) -> m = N ) |
3 |
2
|
eqeq1d |
|- ( ( a = A /\ m = N ) -> ( m = 0 <-> N = 0 ) ) |
4 |
|
simpl |
|- ( ( a = A /\ m = N ) -> a = A ) |
5 |
4
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( a ^ 2 ) = ( A ^ 2 ) ) |
6 |
5
|
eqeq1d |
|- ( ( a = A /\ m = N ) -> ( ( a ^ 2 ) = 1 <-> ( A ^ 2 ) = 1 ) ) |
7 |
6
|
ifbid |
|- ( ( a = A /\ m = N ) -> if ( ( a ^ 2 ) = 1 , 1 , 0 ) = if ( ( A ^ 2 ) = 1 , 1 , 0 ) ) |
8 |
2
|
breq1d |
|- ( ( a = A /\ m = N ) -> ( m < 0 <-> N < 0 ) ) |
9 |
4
|
breq1d |
|- ( ( a = A /\ m = N ) -> ( a < 0 <-> A < 0 ) ) |
10 |
8 9
|
anbi12d |
|- ( ( a = A /\ m = N ) -> ( ( m < 0 /\ a < 0 ) <-> ( N < 0 /\ A < 0 ) ) ) |
11 |
10
|
ifbid |
|- ( ( a = A /\ m = N ) -> if ( ( m < 0 /\ a < 0 ) , -u 1 , 1 ) = if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) ) |
12 |
4
|
breq2d |
|- ( ( a = A /\ m = N ) -> ( 2 || a <-> 2 || A ) ) |
13 |
4
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( a mod 8 ) = ( A mod 8 ) ) |
14 |
13
|
eleq1d |
|- ( ( a = A /\ m = N ) -> ( ( a mod 8 ) e. { 1 , 7 } <-> ( A mod 8 ) e. { 1 , 7 } ) ) |
15 |
14
|
ifbid |
|- ( ( a = A /\ m = N ) -> if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) = if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) |
16 |
12 15
|
ifbieq2d |
|- ( ( a = A /\ m = N ) -> if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) = if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) ) |
17 |
4
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( a ^ ( ( n - 1 ) / 2 ) ) = ( A ^ ( ( n - 1 ) / 2 ) ) ) |
18 |
17
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) = ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) ) |
19 |
18
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) = ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) ) |
20 |
19
|
oveq1d |
|- ( ( a = A /\ m = N ) -> ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) = ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) |
21 |
16 20
|
ifeq12d |
|- ( ( a = A /\ m = N ) -> if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) = if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ) |
22 |
2
|
oveq2d |
|- ( ( a = A /\ m = N ) -> ( n pCnt m ) = ( n pCnt N ) ) |
23 |
21 22
|
oveq12d |
|- ( ( a = A /\ m = N ) -> ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) = ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) ) |
24 |
23
|
ifeq1d |
|- ( ( a = A /\ m = N ) -> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) = if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) |
25 |
24
|
mpteq2dv |
|- ( ( a = A /\ m = N ) -> ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) = ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || A , 0 , if ( ( A mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( A ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt N ) ) , 1 ) ) ) |
26 |
25 1
|
eqtr4di |
|- ( ( a = A /\ m = N ) -> ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) = F ) |
27 |
26
|
seqeq3d |
|- ( ( a = A /\ m = N ) -> seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) ) = seq 1 ( x. , F ) ) |
28 |
2
|
fveq2d |
|- ( ( a = A /\ m = N ) -> ( abs ` m ) = ( abs ` N ) ) |
29 |
27 28
|
fveq12d |
|- ( ( a = A /\ m = N ) -> ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) ) ` ( abs ` m ) ) = ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) |
30 |
11 29
|
oveq12d |
|- ( ( a = A /\ m = N ) -> ( if ( ( m < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) ) ` ( abs ` m ) ) ) = ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) |
31 |
3 7 30
|
ifbieq12d |
|- ( ( a = A /\ m = N ) -> if ( m = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( m < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) ) ` ( abs ` m ) ) ) ) = if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) ) |
32 |
|
df-lgs |
|- /L = ( a e. ZZ , m e. ZZ |-> if ( m = 0 , if ( ( a ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( m < 0 /\ a < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , ( n e. NN |-> if ( n e. Prime , ( if ( n = 2 , if ( 2 || a , 0 , if ( ( a mod 8 ) e. { 1 , 7 } , 1 , -u 1 ) ) , ( ( ( ( a ^ ( ( n - 1 ) / 2 ) ) + 1 ) mod n ) - 1 ) ) ^ ( n pCnt m ) ) , 1 ) ) ) ` ( abs ` m ) ) ) ) ) |
33 |
|
1nn0 |
|- 1 e. NN0 |
34 |
|
0nn0 |
|- 0 e. NN0 |
35 |
33 34
|
ifcli |
|- if ( ( A ^ 2 ) = 1 , 1 , 0 ) e. NN0 |
36 |
35
|
elexi |
|- if ( ( A ^ 2 ) = 1 , 1 , 0 ) e. _V |
37 |
|
ovex |
|- ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) e. _V |
38 |
36 37
|
ifex |
|- if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) e. _V |
39 |
31 32 38
|
ovmpoa |
|- ( ( A e. ZZ /\ N e. ZZ ) -> ( A /L N ) = if ( N = 0 , if ( ( A ^ 2 ) = 1 , 1 , 0 ) , ( if ( ( N < 0 /\ A < 0 ) , -u 1 , 1 ) x. ( seq 1 ( x. , F ) ` ( abs ` N ) ) ) ) ) |