Step |
Hyp |
Ref |
Expression |
1 |
|
suceq |
|- ( A = if ( Lim A , A , On ) -> suc A = suc if ( Lim A , A , On ) ) |
2 |
1
|
eleq1d |
|- ( A = if ( Lim A , A , On ) -> ( suc A e. Comp <-> suc if ( Lim A , A , On ) e. Comp ) ) |
3 |
2
|
notbid |
|- ( A = if ( Lim A , A , On ) -> ( -. suc A e. Comp <-> -. suc if ( Lim A , A , On ) e. Comp ) ) |
4 |
|
limeq |
|- ( A = if ( Lim A , A , On ) -> ( Lim A <-> Lim if ( Lim A , A , On ) ) ) |
5 |
|
limeq |
|- ( On = if ( Lim A , A , On ) -> ( Lim On <-> Lim if ( Lim A , A , On ) ) ) |
6 |
|
limon |
|- Lim On |
7 |
4 5 6
|
elimhyp |
|- Lim if ( Lim A , A , On ) |
8 |
7
|
limsucncmpi |
|- -. suc if ( Lim A , A , On ) e. Comp |
9 |
3 8
|
dedth |
|- ( Lim A -> -. suc A e. Comp ) |