| Step |
Hyp |
Ref |
Expression |
| 1 |
|
suceq |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → suc 𝐴 = suc if ( Lim 𝐴 , 𝐴 , On ) ) |
| 2 |
1
|
eleq1d |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( suc 𝐴 ∈ Comp ↔ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp ) ) |
| 3 |
2
|
notbid |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( ¬ suc 𝐴 ∈ Comp ↔ ¬ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp ) ) |
| 4 |
|
limeq |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim 𝐴 ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) |
| 5 |
|
limeq |
⊢ ( On = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim On ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) |
| 6 |
|
limon |
⊢ Lim On |
| 7 |
4 5 6
|
elimhyp |
⊢ Lim if ( Lim 𝐴 , 𝐴 , On ) |
| 8 |
7
|
limsucncmpi |
⊢ ¬ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp |
| 9 |
3 8
|
dedth |
⊢ ( Lim 𝐴 → ¬ suc 𝐴 ∈ Comp ) |