Metamath Proof Explorer


Theorem limsucncmp

Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015)

Ref Expression
Assertion limsucncmp ( Lim 𝐴 → ¬ suc 𝐴 ∈ Comp )

Proof

Step Hyp Ref Expression
1 suceq ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → suc 𝐴 = suc if ( Lim 𝐴 , 𝐴 , On ) )
2 1 eleq1d ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( suc 𝐴 ∈ Comp ↔ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp ) )
3 2 notbid ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( ¬ suc 𝐴 ∈ Comp ↔ ¬ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp ) )
4 limeq ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim 𝐴 ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) )
5 limeq ( On = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim On ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) )
6 limon Lim On
7 4 5 6 elimhyp Lim if ( Lim 𝐴 , 𝐴 , On )
8 7 limsucncmpi ¬ suc if ( Lim 𝐴 , 𝐴 , On ) ∈ Comp
9 3 8 dedth ( Lim 𝐴 → ¬ suc 𝐴 ∈ Comp )