Step |
Hyp |
Ref |
Expression |
1 |
|
limsucncmpi.1 |
⊢ Lim 𝐴 |
2 |
|
elex |
⊢ ( suc 𝐴 ∈ Top → suc 𝐴 ∈ V ) |
3 |
|
sucexb |
⊢ ( 𝐴 ∈ V ↔ suc 𝐴 ∈ V ) |
4 |
2 3
|
sylibr |
⊢ ( suc 𝐴 ∈ Top → 𝐴 ∈ V ) |
5 |
|
sssucid |
⊢ 𝐴 ⊆ suc 𝐴 |
6 |
|
elpwg |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 suc 𝐴 ↔ 𝐴 ⊆ suc 𝐴 ) ) |
7 |
5 6
|
mpbiri |
⊢ ( 𝐴 ∈ V → 𝐴 ∈ 𝒫 suc 𝐴 ) |
8 |
|
limuni |
⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
9 |
1 8
|
ax-mp |
⊢ 𝐴 = ∪ 𝐴 |
10 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) ↔ ( 𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ∈ Fin ) ) |
11 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝐴 → 𝑧 ⊆ 𝐴 ) |
12 |
11
|
anim1i |
⊢ ( ( 𝑧 ∈ 𝒫 𝐴 ∧ 𝑧 ∈ Fin ) → ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) |
13 |
10 12
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) ) |
14 |
|
nlim0 |
⊢ ¬ Lim ∅ |
15 |
1 14
|
2th |
⊢ ( Lim 𝐴 ↔ ¬ Lim ∅ ) |
16 |
|
xor3 |
⊢ ( ¬ ( Lim 𝐴 ↔ Lim ∅ ) ↔ ( Lim 𝐴 ↔ ¬ Lim ∅ ) ) |
17 |
15 16
|
mpbir |
⊢ ¬ ( Lim 𝐴 ↔ Lim ∅ ) |
18 |
|
limeq |
⊢ ( 𝐴 = ∅ → ( Lim 𝐴 ↔ Lim ∅ ) ) |
19 |
18
|
necon3bi |
⊢ ( ¬ ( Lim 𝐴 ↔ Lim ∅ ) → 𝐴 ≠ ∅ ) |
20 |
17 19
|
ax-mp |
⊢ 𝐴 ≠ ∅ |
21 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
22 |
20 21
|
neeqtrri |
⊢ 𝐴 ≠ ∪ ∅ |
23 |
|
unieq |
⊢ ( 𝑧 = ∅ → ∪ 𝑧 = ∪ ∅ ) |
24 |
23
|
neeq2d |
⊢ ( 𝑧 = ∅ → ( 𝐴 ≠ ∪ 𝑧 ↔ 𝐴 ≠ ∪ ∅ ) ) |
25 |
22 24
|
mpbiri |
⊢ ( 𝑧 = ∅ → 𝐴 ≠ ∪ 𝑧 ) |
26 |
25
|
a1i |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) → ( 𝑧 = ∅ → 𝐴 ≠ ∪ 𝑧 ) ) |
27 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
28 |
|
ordsson |
⊢ ( Ord 𝐴 → 𝐴 ⊆ On ) |
29 |
1 27 28
|
mp2b |
⊢ 𝐴 ⊆ On |
30 |
|
sstr2 |
⊢ ( 𝑧 ⊆ 𝐴 → ( 𝐴 ⊆ On → 𝑧 ⊆ On ) ) |
31 |
29 30
|
mpi |
⊢ ( 𝑧 ⊆ 𝐴 → 𝑧 ⊆ On ) |
32 |
|
ordunifi |
⊢ ( ( 𝑧 ⊆ On ∧ 𝑧 ∈ Fin ∧ 𝑧 ≠ ∅ ) → ∪ 𝑧 ∈ 𝑧 ) |
33 |
32
|
3expia |
⊢ ( ( 𝑧 ⊆ On ∧ 𝑧 ∈ Fin ) → ( 𝑧 ≠ ∅ → ∪ 𝑧 ∈ 𝑧 ) ) |
34 |
31 33
|
sylan |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) → ( 𝑧 ≠ ∅ → ∪ 𝑧 ∈ 𝑧 ) ) |
35 |
|
ssel |
⊢ ( 𝑧 ⊆ 𝐴 → ( ∪ 𝑧 ∈ 𝑧 → ∪ 𝑧 ∈ 𝐴 ) ) |
36 |
1 27
|
ax-mp |
⊢ Ord 𝐴 |
37 |
|
nordeq |
⊢ ( ( Ord 𝐴 ∧ ∪ 𝑧 ∈ 𝐴 ) → 𝐴 ≠ ∪ 𝑧 ) |
38 |
36 37
|
mpan |
⊢ ( ∪ 𝑧 ∈ 𝐴 → 𝐴 ≠ ∪ 𝑧 ) |
39 |
35 38
|
syl6 |
⊢ ( 𝑧 ⊆ 𝐴 → ( ∪ 𝑧 ∈ 𝑧 → 𝐴 ≠ ∪ 𝑧 ) ) |
40 |
39
|
adantr |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) → ( ∪ 𝑧 ∈ 𝑧 → 𝐴 ≠ ∪ 𝑧 ) ) |
41 |
34 40
|
syld |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) → ( 𝑧 ≠ ∅ → 𝐴 ≠ ∪ 𝑧 ) ) |
42 |
26 41
|
pm2.61dne |
⊢ ( ( 𝑧 ⊆ 𝐴 ∧ 𝑧 ∈ Fin ) → 𝐴 ≠ ∪ 𝑧 ) |
43 |
13 42
|
syl |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝐴 ≠ ∪ 𝑧 ) |
44 |
43
|
neneqd |
⊢ ( 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) → ¬ 𝐴 = ∪ 𝑧 ) |
45 |
44
|
nrex |
⊢ ¬ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝐴 = ∪ 𝑧 |
46 |
|
unieq |
⊢ ( 𝑦 = 𝐴 → ∪ 𝑦 = ∪ 𝐴 ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝐴 = ∪ 𝑦 ↔ 𝐴 = ∪ 𝐴 ) ) |
48 |
|
pweq |
⊢ ( 𝑦 = 𝐴 → 𝒫 𝑦 = 𝒫 𝐴 ) |
49 |
48
|
ineq1d |
⊢ ( 𝑦 = 𝐴 → ( 𝒫 𝑦 ∩ Fin ) = ( 𝒫 𝐴 ∩ Fin ) ) |
50 |
49
|
rexeqdv |
⊢ ( 𝑦 = 𝐴 → ( ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ↔ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
51 |
50
|
notbid |
⊢ ( 𝑦 = 𝐴 → ( ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ↔ ¬ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
52 |
47 51
|
anbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐴 = ∪ 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ↔ ( 𝐴 = ∪ 𝐴 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) ) |
53 |
52
|
rspcev |
⊢ ( ( 𝐴 ∈ 𝒫 suc 𝐴 ∧ ( 𝐴 = ∪ 𝐴 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) → ∃ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
54 |
9 45 53
|
mpanr12 |
⊢ ( 𝐴 ∈ 𝒫 suc 𝐴 → ∃ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
55 |
|
rexanali |
⊢ ( ∃ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 ∧ ¬ ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ↔ ¬ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
56 |
54 55
|
sylib |
⊢ ( 𝐴 ∈ 𝒫 suc 𝐴 → ¬ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
57 |
4 7 56
|
3syl |
⊢ ( suc 𝐴 ∈ Top → ¬ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
58 |
|
imnan |
⊢ ( ( suc 𝐴 ∈ Top → ¬ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) ↔ ¬ ( suc 𝐴 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) ) |
59 |
57 58
|
mpbi |
⊢ ¬ ( suc 𝐴 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) |
60 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
61 |
1 27 60
|
mp2b |
⊢ ∪ suc 𝐴 = 𝐴 |
62 |
61
|
eqcomi |
⊢ 𝐴 = ∪ suc 𝐴 |
63 |
62
|
iscmp |
⊢ ( suc 𝐴 ∈ Comp ↔ ( suc 𝐴 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 suc 𝐴 ( 𝐴 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) 𝐴 = ∪ 𝑧 ) ) ) |
64 |
59 63
|
mtbir |
⊢ ¬ suc 𝐴 ∈ Comp |