Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | limsucncmpi.1 | |
|
Assertion | limsucncmpi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limsucncmpi.1 | |
|
2 | elex | |
|
3 | sucexb | |
|
4 | 2 3 | sylibr | |
5 | sssucid | |
|
6 | elpwg | |
|
7 | 5 6 | mpbiri | |
8 | limuni | |
|
9 | 1 8 | ax-mp | |
10 | elin | |
|
11 | elpwi | |
|
12 | 11 | anim1i | |
13 | 10 12 | sylbi | |
14 | nlim0 | |
|
15 | 1 14 | 2th | |
16 | xor3 | |
|
17 | 15 16 | mpbir | |
18 | limeq | |
|
19 | 18 | necon3bi | |
20 | 17 19 | ax-mp | |
21 | uni0 | |
|
22 | 20 21 | neeqtrri | |
23 | unieq | |
|
24 | 23 | neeq2d | |
25 | 22 24 | mpbiri | |
26 | 25 | a1i | |
27 | limord | |
|
28 | ordsson | |
|
29 | 1 27 28 | mp2b | |
30 | sstr2 | |
|
31 | 29 30 | mpi | |
32 | ordunifi | |
|
33 | 32 | 3expia | |
34 | 31 33 | sylan | |
35 | ssel | |
|
36 | 1 27 | ax-mp | |
37 | nordeq | |
|
38 | 36 37 | mpan | |
39 | 35 38 | syl6 | |
40 | 39 | adantr | |
41 | 34 40 | syld | |
42 | 26 41 | pm2.61dne | |
43 | 13 42 | syl | |
44 | 43 | neneqd | |
45 | 44 | nrex | |
46 | unieq | |
|
47 | 46 | eqeq2d | |
48 | pweq | |
|
49 | 48 | ineq1d | |
50 | 49 | rexeqdv | |
51 | 50 | notbid | |
52 | 47 51 | anbi12d | |
53 | 52 | rspcev | |
54 | 9 45 53 | mpanr12 | |
55 | rexanali | |
|
56 | 54 55 | sylib | |
57 | 4 7 56 | 3syl | |
58 | imnan | |
|
59 | 57 58 | mpbi | |
60 | ordunisuc | |
|
61 | 1 27 60 | mp2b | |
62 | 61 | eqcomi | |
63 | 62 | iscmp | |
64 | 59 63 | mtbir | |