Metamath Proof Explorer


Theorem limsucncmpi

Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015)

Ref Expression
Hypothesis limsucncmpi.1 LimA
Assertion limsucncmpi ¬sucAComp

Proof

Step Hyp Ref Expression
1 limsucncmpi.1 LimA
2 elex sucATopsucAV
3 sucexb AVsucAV
4 2 3 sylibr sucATopAV
5 sssucid AsucA
6 elpwg AVA𝒫sucAAsucA
7 5 6 mpbiri AVA𝒫sucA
8 limuni LimAA=A
9 1 8 ax-mp A=A
10 elin z𝒫AFinz𝒫AzFin
11 elpwi z𝒫AzA
12 11 anim1i z𝒫AzFinzAzFin
13 10 12 sylbi z𝒫AFinzAzFin
14 nlim0 ¬Lim
15 1 14 2th LimA¬Lim
16 xor3 ¬LimALimLimA¬Lim
17 15 16 mpbir ¬LimALim
18 limeq A=LimALim
19 18 necon3bi ¬LimALimA
20 17 19 ax-mp A
21 uni0 =
22 20 21 neeqtrri A
23 unieq z=z=
24 23 neeq2d z=AzA
25 22 24 mpbiri z=Az
26 25 a1i zAzFinz=Az
27 limord LimAOrdA
28 ordsson OrdAAOn
29 1 27 28 mp2b AOn
30 sstr2 zAAOnzOn
31 29 30 mpi zAzOn
32 ordunifi zOnzFinzzz
33 32 3expia zOnzFinzzz
34 31 33 sylan zAzFinzzz
35 ssel zAzzzA
36 1 27 ax-mp OrdA
37 nordeq OrdAzAAz
38 36 37 mpan zAAz
39 35 38 syl6 zAzzAz
40 39 adantr zAzFinzzAz
41 34 40 syld zAzFinzAz
42 26 41 pm2.61dne zAzFinAz
43 13 42 syl z𝒫AFinAz
44 43 neneqd z𝒫AFin¬A=z
45 44 nrex ¬z𝒫AFinA=z
46 unieq y=Ay=A
47 46 eqeq2d y=AA=yA=A
48 pweq y=A𝒫y=𝒫A
49 48 ineq1d y=A𝒫yFin=𝒫AFin
50 49 rexeqdv y=Az𝒫yFinA=zz𝒫AFinA=z
51 50 notbid y=A¬z𝒫yFinA=z¬z𝒫AFinA=z
52 47 51 anbi12d y=AA=y¬z𝒫yFinA=zA=A¬z𝒫AFinA=z
53 52 rspcev A𝒫sucAA=A¬z𝒫AFinA=zy𝒫sucAA=y¬z𝒫yFinA=z
54 9 45 53 mpanr12 A𝒫sucAy𝒫sucAA=y¬z𝒫yFinA=z
55 rexanali y𝒫sucAA=y¬z𝒫yFinA=z¬y𝒫sucAA=yz𝒫yFinA=z
56 54 55 sylib A𝒫sucA¬y𝒫sucAA=yz𝒫yFinA=z
57 4 7 56 3syl sucATop¬y𝒫sucAA=yz𝒫yFinA=z
58 imnan sucATop¬y𝒫sucAA=yz𝒫yFinA=z¬sucATopy𝒫sucAA=yz𝒫yFinA=z
59 57 58 mpbi ¬sucATopy𝒫sucAA=yz𝒫yFinA=z
60 ordunisuc OrdAsucA=A
61 1 27 60 mp2b sucA=A
62 61 eqcomi A=sucA
63 62 iscmp sucACompsucATopy𝒫sucAA=yz𝒫yFinA=z
64 59 63 mtbir ¬sucAComp