Metamath Proof Explorer


Theorem limsucncmpi

Description: The successor of a limit ordinal is not compact. (Contributed by Chen-Pang He, 20-Oct-2015)

Ref Expression
Hypothesis limsucncmpi.1 Lim A
Assertion limsucncmpi ¬ suc A Comp

Proof

Step Hyp Ref Expression
1 limsucncmpi.1 Lim A
2 elex suc A Top suc A V
3 sucexb A V suc A V
4 2 3 sylibr suc A Top A V
5 sssucid A suc A
6 elpwg A V A 𝒫 suc A A suc A
7 5 6 mpbiri A V A 𝒫 suc A
8 limuni Lim A A = A
9 1 8 ax-mp A = A
10 elin z 𝒫 A Fin z 𝒫 A z Fin
11 elpwi z 𝒫 A z A
12 11 anim1i z 𝒫 A z Fin z A z Fin
13 10 12 sylbi z 𝒫 A Fin z A z Fin
14 nlim0 ¬ Lim
15 1 14 2th Lim A ¬ Lim
16 xor3 ¬ Lim A Lim Lim A ¬ Lim
17 15 16 mpbir ¬ Lim A Lim
18 limeq A = Lim A Lim
19 18 necon3bi ¬ Lim A Lim A
20 17 19 ax-mp A
21 uni0 =
22 20 21 neeqtrri A
23 unieq z = z =
24 23 neeq2d z = A z A
25 22 24 mpbiri z = A z
26 25 a1i z A z Fin z = A z
27 limord Lim A Ord A
28 ordsson Ord A A On
29 1 27 28 mp2b A On
30 sstr2 z A A On z On
31 29 30 mpi z A z On
32 ordunifi z On z Fin z z z
33 32 3expia z On z Fin z z z
34 31 33 sylan z A z Fin z z z
35 ssel z A z z z A
36 1 27 ax-mp Ord A
37 nordeq Ord A z A A z
38 36 37 mpan z A A z
39 35 38 syl6 z A z z A z
40 39 adantr z A z Fin z z A z
41 34 40 syld z A z Fin z A z
42 26 41 pm2.61dne z A z Fin A z
43 13 42 syl z 𝒫 A Fin A z
44 43 neneqd z 𝒫 A Fin ¬ A = z
45 44 nrex ¬ z 𝒫 A Fin A = z
46 unieq y = A y = A
47 46 eqeq2d y = A A = y A = A
48 pweq y = A 𝒫 y = 𝒫 A
49 48 ineq1d y = A 𝒫 y Fin = 𝒫 A Fin
50 49 rexeqdv y = A z 𝒫 y Fin A = z z 𝒫 A Fin A = z
51 50 notbid y = A ¬ z 𝒫 y Fin A = z ¬ z 𝒫 A Fin A = z
52 47 51 anbi12d y = A A = y ¬ z 𝒫 y Fin A = z A = A ¬ z 𝒫 A Fin A = z
53 52 rspcev A 𝒫 suc A A = A ¬ z 𝒫 A Fin A = z y 𝒫 suc A A = y ¬ z 𝒫 y Fin A = z
54 9 45 53 mpanr12 A 𝒫 suc A y 𝒫 suc A A = y ¬ z 𝒫 y Fin A = z
55 rexanali y 𝒫 suc A A = y ¬ z 𝒫 y Fin A = z ¬ y 𝒫 suc A A = y z 𝒫 y Fin A = z
56 54 55 sylib A 𝒫 suc A ¬ y 𝒫 suc A A = y z 𝒫 y Fin A = z
57 4 7 56 3syl suc A Top ¬ y 𝒫 suc A A = y z 𝒫 y Fin A = z
58 imnan suc A Top ¬ y 𝒫 suc A A = y z 𝒫 y Fin A = z ¬ suc A Top y 𝒫 suc A A = y z 𝒫 y Fin A = z
59 57 58 mpbi ¬ suc A Top y 𝒫 suc A A = y z 𝒫 y Fin A = z
60 ordunisuc Ord A suc A = A
61 1 27 60 mp2b suc A = A
62 61 eqcomi A = suc A
63 62 iscmp suc A Comp suc A Top y 𝒫 suc A A = y z 𝒫 y Fin A = z
64 59 63 mtbir ¬ suc A Comp