Metamath Proof Explorer


Theorem lincresunitlem1

Description: Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b
|- B = ( Base ` M )
lincresunit.r
|- R = ( Scalar ` M )
lincresunit.e
|- E = ( Base ` R )
lincresunit.u
|- U = ( Unit ` R )
lincresunit.0
|- .0. = ( 0g ` R )
lincresunit.z
|- Z = ( 0g ` M )
lincresunit.n
|- N = ( invg ` R )
lincresunit.i
|- I = ( invr ` R )
lincresunit.t
|- .x. = ( .r ` R )
lincresunit.g
|- G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) )
Assertion lincresunitlem1
|- ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> ( I ` ( N ` ( F ` X ) ) ) e. E )

Proof

Step Hyp Ref Expression
1 lincresunit.b
 |-  B = ( Base ` M )
2 lincresunit.r
 |-  R = ( Scalar ` M )
3 lincresunit.e
 |-  E = ( Base ` R )
4 lincresunit.u
 |-  U = ( Unit ` R )
5 lincresunit.0
 |-  .0. = ( 0g ` R )
6 lincresunit.z
 |-  Z = ( 0g ` M )
7 lincresunit.n
 |-  N = ( invg ` R )
8 lincresunit.i
 |-  I = ( invr ` R )
9 lincresunit.t
 |-  .x. = ( .r ` R )
10 lincresunit.g
 |-  G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) )
11 2 lmodring
 |-  ( M e. LMod -> R e. Ring )
12 11 3ad2ant2
 |-  ( ( S e. ~P B /\ M e. LMod /\ X e. S ) -> R e. Ring )
13 12 adantr
 |-  ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> R e. Ring )
14 simpr
 |-  ( ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) -> ( F ` X ) e. U )
15 4 7 unitnegcl
 |-  ( ( R e. Ring /\ ( F ` X ) e. U ) -> ( N ` ( F ` X ) ) e. U )
16 12 14 15 syl2an
 |-  ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> ( N ` ( F ` X ) ) e. U )
17 4 8 3 ringinvcl
 |-  ( ( R e. Ring /\ ( N ` ( F ` X ) ) e. U ) -> ( I ` ( N ` ( F ` X ) ) ) e. E )
18 13 16 17 syl2anc
 |-  ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> ( I ` ( N ` ( F ` X ) ) ) e. E )