Step |
Hyp |
Ref |
Expression |
1 |
|
lincresunit.b |
|- B = ( Base ` M ) |
2 |
|
lincresunit.r |
|- R = ( Scalar ` M ) |
3 |
|
lincresunit.e |
|- E = ( Base ` R ) |
4 |
|
lincresunit.u |
|- U = ( Unit ` R ) |
5 |
|
lincresunit.0 |
|- .0. = ( 0g ` R ) |
6 |
|
lincresunit.z |
|- Z = ( 0g ` M ) |
7 |
|
lincresunit.n |
|- N = ( invg ` R ) |
8 |
|
lincresunit.i |
|- I = ( invr ` R ) |
9 |
|
lincresunit.t |
|- .x. = ( .r ` R ) |
10 |
|
lincresunit.g |
|- G = ( s e. ( S \ { X } ) |-> ( ( I ` ( N ` ( F ` X ) ) ) .x. ( F ` s ) ) ) |
11 |
2
|
lmodring |
|- ( M e. LMod -> R e. Ring ) |
12 |
11
|
3ad2ant2 |
|- ( ( S e. ~P B /\ M e. LMod /\ X e. S ) -> R e. Ring ) |
13 |
12
|
adantr |
|- ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> R e. Ring ) |
14 |
|
simpr |
|- ( ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) -> ( F ` X ) e. U ) |
15 |
4 7
|
unitnegcl |
|- ( ( R e. Ring /\ ( F ` X ) e. U ) -> ( N ` ( F ` X ) ) e. U ) |
16 |
12 14 15
|
syl2an |
|- ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> ( N ` ( F ` X ) ) e. U ) |
17 |
4 8 3
|
ringinvcl |
|- ( ( R e. Ring /\ ( N ` ( F ` X ) ) e. U ) -> ( I ` ( N ` ( F ` X ) ) ) e. E ) |
18 |
13 16 17
|
syl2anc |
|- ( ( ( S e. ~P B /\ M e. LMod /\ X e. S ) /\ ( F e. ( E ^m S ) /\ ( F ` X ) e. U ) ) -> ( I ` ( N ` ( F ` X ) ) ) e. E ) |