Metamath Proof Explorer


Theorem lincresunitlem1

Description: Lemma 1 for properties of a specially modified restriction of a linear combination containing a unit as scalar. (Contributed by AV, 18-May-2019)

Ref Expression
Hypotheses lincresunit.b B = Base M
lincresunit.r R = Scalar M
lincresunit.e E = Base R
lincresunit.u U = Unit R
lincresunit.0 0 ˙ = 0 R
lincresunit.z Z = 0 M
lincresunit.n N = inv g R
lincresunit.i I = inv r R
lincresunit.t · ˙ = R
lincresunit.g G = s S X I N F X · ˙ F s
Assertion lincresunitlem1 S 𝒫 B M LMod X S F E S F X U I N F X E

Proof

Step Hyp Ref Expression
1 lincresunit.b B = Base M
2 lincresunit.r R = Scalar M
3 lincresunit.e E = Base R
4 lincresunit.u U = Unit R
5 lincresunit.0 0 ˙ = 0 R
6 lincresunit.z Z = 0 M
7 lincresunit.n N = inv g R
8 lincresunit.i I = inv r R
9 lincresunit.t · ˙ = R
10 lincresunit.g G = s S X I N F X · ˙ F s
11 2 lmodring M LMod R Ring
12 11 3ad2ant2 S 𝒫 B M LMod X S R Ring
13 12 adantr S 𝒫 B M LMod X S F E S F X U R Ring
14 simpr F E S F X U F X U
15 4 7 unitnegcl R Ring F X U N F X U
16 12 14 15 syl2an S 𝒫 B M LMod X S F E S F X U N F X U
17 4 8 3 ringinvcl R Ring N F X U I N F X E
18 13 16 17 syl2anc S 𝒫 B M LMod X S F E S F X U I N F X E