Metamath Proof Explorer


Theorem lngndxnitvndx

Description: The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval . (Contributed by AV, 9-Nov-2024)

Ref Expression
Assertion lngndxnitvndx
|- ( LineG ` ndx ) =/= ( Itv ` ndx )

Proof

Step Hyp Ref Expression
1 1nn0
 |-  1 e. NN0
2 6nn
 |-  6 e. NN
3 1 2 decnncl
 |-  ; 1 6 e. NN
4 3 nnrei
 |-  ; 1 6 e. RR
5 6nn0
 |-  6 e. NN0
6 7nn
 |-  7 e. NN
7 6lt7
 |-  6 < 7
8 1 5 6 7 declt
 |-  ; 1 6 < ; 1 7
9 4 8 gtneii
 |-  ; 1 7 =/= ; 1 6
10 lngndx
 |-  ( LineG ` ndx ) = ; 1 7
11 itvndx
 |-  ( Itv ` ndx ) = ; 1 6
12 10 11 neeq12i
 |-  ( ( LineG ` ndx ) =/= ( Itv ` ndx ) <-> ; 1 7 =/= ; 1 6 )
13 9 12 mpbir
 |-  ( LineG ` ndx ) =/= ( Itv ` ndx )