Metamath Proof Explorer


Theorem lngndxnitvndx

Description: The slot for the line is not the slot for the Interval (segment) in an extensible structure. Formerly part of proof for ttgval . (Contributed by AV, 9-Nov-2024)

Ref Expression
Assertion lngndxnitvndx ( LineG ‘ ndx ) ≠ ( Itv ‘ ndx )

Proof

Step Hyp Ref Expression
1 1nn0 1 ∈ ℕ0
2 6nn 6 ∈ ℕ
3 1 2 decnncl 1 6 ∈ ℕ
4 3 nnrei 1 6 ∈ ℝ
5 6nn0 6 ∈ ℕ0
6 7nn 7 ∈ ℕ
7 6lt7 6 < 7
8 1 5 6 7 declt 1 6 < 1 7
9 4 8 gtneii 1 7 ≠ 1 6
10 lngndx ( LineG ‘ ndx ) = 1 7
11 itvndx ( Itv ‘ ndx ) = 1 6
12 10 11 neeq12i ( ( LineG ‘ ndx ) ≠ ( Itv ‘ ndx ) ↔ 1 7 ≠ 1 6 )
13 9 12 mpbir ( LineG ‘ ndx ) ≠ ( Itv ‘ ndx )