| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttgval.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | ttgval.m | ⊢  −   =  ( -g ‘ 𝐻 ) | 
						
							| 4 |  | ttgval.s | ⊢  ·   =  (  ·𝑠  ‘ 𝐻 ) | 
						
							| 5 |  | ttgval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 6 | 1 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( toTG ‘ 𝐻 ) ) | 
						
							| 7 |  | elex | ⊢ ( 𝐻  ∈  𝑉  →  𝐻  ∈  V ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 8 2 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  𝐵 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =  ( -g ‘ 𝐻 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =   −  ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝑤  =  𝐻  →  ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑧  −  𝑥 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝐻 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =   ·  ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝑤  =  𝐻  →  𝑘  =  𝑘 ) | 
						
							| 16 | 11 | oveqd | ⊢ ( 𝑤  =  𝐻  →  ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑦  −  𝑥 ) ) | 
						
							| 17 | 14 15 16 | oveq123d | ⊢ ( 𝑤  =  𝐻  →  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 18 | 12 17 | eqeq12d | ⊢ ( 𝑤  =  𝐻  →  ( ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑤  =  𝐻  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 20 | 9 19 | rabeqbidv | ⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 21 | 9 9 20 | mpoeq123dv | ⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 22 |  | oveq1 | ⊢ ( 𝑤  =  𝐻  →  ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 ) ) | 
						
							| 23 | 9 | rabeqdv | ⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) | 
						
							| 24 | 9 9 23 | mpoeq123dv | ⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) ) | 
						
							| 25 | 24 | opeq2d | ⊢ ( 𝑤  =  𝐻  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) | 
						
							| 26 | 22 25 | oveq12d | ⊢ ( 𝑤  =  𝐻  →  ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 27 | 21 26 | csbeq12dv | ⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 28 |  | df-ttg | ⊢ toTG  =  ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 29 |  | ovex | ⊢ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V | 
						
							| 30 | 29 | csbex | ⊢ ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V | 
						
							| 31 | 27 28 30 | fvmpt | ⊢ ( 𝐻  ∈  V  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 32 | 7 31 | syl | ⊢ ( 𝐻  ∈  𝑉  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 33 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 34 | 33 33 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V | 
						
							| 35 | 34 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V ) | 
						
							| 36 |  | simpr | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 37 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑐  −  𝑎 )  =  ( 𝑐  −  𝑥 ) ) | 
						
							| 38 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑏  −  𝑎 )  =  ( 𝑏  −  𝑥 ) ) | 
						
							| 39 | 38 | oveq2d | ⊢ ( 𝑎  =  𝑥  →  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) | 
						
							| 40 | 37 39 | eqeq12d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) ) | 
						
							| 41 | 40 | rexbidv | ⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) ) | 
						
							| 42 | 41 | rabbidv | ⊢ ( 𝑎  =  𝑥  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) } ) | 
						
							| 43 |  | oveq1 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑏  −  𝑥 )  =  ( 𝑦  −  𝑥 ) ) | 
						
							| 44 | 43 | oveq2d | ⊢ ( 𝑏  =  𝑦  →  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 45 | 44 | eqeq2d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 46 | 45 | rexbidv | ⊢ ( 𝑏  =  𝑦  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 47 | 46 | rabbidv | ⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 48 |  | oveq1 | ⊢ ( 𝑐  =  𝑧  →  ( 𝑐  −  𝑥 )  =  ( 𝑧  −  𝑥 ) ) | 
						
							| 49 | 48 | eqeq1d | ⊢ ( 𝑐  =  𝑧  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 50 | 49 | rexbidv | ⊢ ( 𝑐  =  𝑧  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 51 | 50 | cbvrabv | ⊢ { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } | 
						
							| 52 | 47 51 | eqtrdi | ⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 53 | 42 52 | cbvmpov | ⊢ ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 54 | 36 53 | eqtr4di | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) ) | 
						
							| 55 |  | simpr | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) ) | 
						
							| 56 | 55 53 | eqtrdi | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 57 | 56 | opeq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( Itv ‘ ndx ) ,  𝑖 〉  =  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) | 
						
							| 59 | 56 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 60 | 59 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 61 | 56 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧 𝑖 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 62 | 61 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 63 | 56 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) | 
						
							| 64 | 63 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑦  ∈  ( 𝑥 𝑖 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) | 
						
							| 65 | 60 62 64 | 3orbi123d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) ) | 
						
							| 66 | 65 | rabbidv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) | 
						
							| 67 | 66 | mpoeq3dv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) ) | 
						
							| 68 | 67 | opeq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) | 
						
							| 69 | 58 68 | oveq12d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 70 | 54 69 | syldan | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 71 | 35 70 | csbied | ⊢ ( 𝐻  ∈  𝑉  →  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 72 | 6 32 71 | 3eqtrd | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 73 | 72 | fveq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) ) | 
						
							| 74 |  | itvid | ⊢ Itv  =  Slot  ( Itv ‘ ndx ) | 
						
							| 75 |  | lngndxnitvndx | ⊢ ( LineG ‘ ndx )  ≠  ( Itv ‘ ndx ) | 
						
							| 76 | 75 | necomi | ⊢ ( Itv ‘ ndx )  ≠  ( LineG ‘ ndx ) | 
						
							| 77 | 74 76 | setsnid | ⊢ ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 78 | 73 77 | eqtr4di | ⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 79 | 5 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( Itv ‘ 𝐺 ) ) | 
						
							| 80 | 74 | setsid | ⊢ ( ( 𝐻  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 81 | 34 80 | mpan2 | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 82 | 78 79 81 | 3eqtr4d | ⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 83 | 82 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 84 | 83 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 85 | 82 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧 𝐼 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 86 | 85 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 87 | 82 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) | 
						
							| 88 | 87 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑦  ∈  ( 𝑥 𝐼 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) | 
						
							| 89 | 84 86 88 | 3orbi123d | ⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) ) | 
						
							| 90 | 89 | rabbidv | ⊢ ( 𝐻  ∈  𝑉  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) | 
						
							| 91 | 90 | mpoeq3dv | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) ) | 
						
							| 92 | 91 | opeq2d | ⊢ ( 𝐻  ∈  𝑉  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) | 
						
							| 93 | 92 | oveq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 94 | 72 93 | eqtr4d | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) ) | 
						
							| 95 | 94 82 | jca | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  ∧  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) ) |