Metamath Proof Explorer


Definition df-ttg

Description: Define a function converting a subcomplex Hilbert space to a Tarski Geometry. It does so by equipping the structure with a betweenness operation. Note that because the scalar product is applied over the interval ( 0 , 1 ) , only spaces whose scalar field is a superset of that interval can be considered. (Contributed by Thierry Arnoux, 24-Mar-2019)

Ref Expression
Assertion df-ttg toTG = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) } ) / 𝑖 ( ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩ ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cttg toTG
1 vw 𝑤
2 cvv V
3 vx 𝑥
4 cbs Base
5 1 cv 𝑤
6 5 4 cfv ( Base ‘ 𝑤 )
7 vy 𝑦
8 vz 𝑧
9 vk 𝑘
10 cc0 0
11 cicc [,]
12 c1 1
13 10 12 11 co ( 0 [,] 1 )
14 8 cv 𝑧
15 csg -g
16 5 15 cfv ( -g𝑤 )
17 3 cv 𝑥
18 14 17 16 co ( 𝑧 ( -g𝑤 ) 𝑥 )
19 9 cv 𝑘
20 cvsca ·𝑠
21 5 20 cfv ( ·𝑠𝑤 )
22 7 cv 𝑦
23 22 17 16 co ( 𝑦 ( -g𝑤 ) 𝑥 )
24 19 23 21 co ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) )
25 18 24 wceq ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) )
26 25 9 13 wrex 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) )
27 26 8 6 crab { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) }
28 3 7 6 6 27 cmpo ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) } )
29 vi 𝑖
30 csts sSet
31 citv Itv
32 cnx ndx
33 32 31 cfv ( Itv ‘ ndx )
34 29 cv 𝑖
35 33 34 cop ⟨ ( Itv ‘ ndx ) , 𝑖
36 5 35 30 co ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ )
37 clng LineG
38 32 37 cfv ( LineG ‘ ndx )
39 17 22 34 co ( 𝑥 𝑖 𝑦 )
40 14 39 wcel 𝑧 ∈ ( 𝑥 𝑖 𝑦 )
41 14 22 34 co ( 𝑧 𝑖 𝑦 )
42 17 41 wcel 𝑥 ∈ ( 𝑧 𝑖 𝑦 )
43 17 14 34 co ( 𝑥 𝑖 𝑧 )
44 22 43 wcel 𝑦 ∈ ( 𝑥 𝑖 𝑧 )
45 40 42 44 w3o ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) )
46 45 8 6 crab { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) }
47 3 7 6 6 46 cmpo ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } )
48 38 47 cop ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩
49 36 48 30 co ( ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩ )
50 29 28 49 csb ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) } ) / 𝑖 ( ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩ )
51 1 2 50 cmpt ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) } ) / 𝑖 ( ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩ ) )
52 0 51 wceq toTG = ( 𝑤 ∈ V ↦ ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ∃ 𝑘 ∈ ( 0 [,] 1 ) ( 𝑧 ( -g𝑤 ) 𝑥 ) = ( 𝑘 ( ·𝑠𝑤 ) ( 𝑦 ( -g𝑤 ) 𝑥 ) ) } ) / 𝑖 ( ( 𝑤 sSet ⟨ ( Itv ‘ ndx ) , 𝑖 ⟩ ) sSet ⟨ ( LineG ‘ ndx ) , ( 𝑥 ∈ ( Base ‘ 𝑤 ) , 𝑦 ∈ ( Base ‘ 𝑤 ) ↦ { 𝑧 ∈ ( Base ‘ 𝑤 ) ∣ ( 𝑧 ∈ ( 𝑥 𝑖 𝑦 ) ∨ 𝑥 ∈ ( 𝑧 𝑖 𝑦 ) ∨ 𝑦 ∈ ( 𝑥 𝑖 𝑧 ) ) } ) ⟩ ) )