| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cttg | ⊢ toTG | 
						
							| 1 |  | vw | ⊢ 𝑤 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vx | ⊢ 𝑥 | 
						
							| 4 |  | cbs | ⊢ Base | 
						
							| 5 | 1 | cv | ⊢ 𝑤 | 
						
							| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑤 ) | 
						
							| 7 |  | vy | ⊢ 𝑦 | 
						
							| 8 |  | vz | ⊢ 𝑧 | 
						
							| 9 |  | vk | ⊢ 𝑘 | 
						
							| 10 |  | cc0 | ⊢ 0 | 
						
							| 11 |  | cicc | ⊢ [,] | 
						
							| 12 |  | c1 | ⊢ 1 | 
						
							| 13 | 10 12 11 | co | ⊢ ( 0 [,] 1 ) | 
						
							| 14 | 8 | cv | ⊢ 𝑧 | 
						
							| 15 |  | csg | ⊢ -g | 
						
							| 16 | 5 15 | cfv | ⊢ ( -g ‘ 𝑤 ) | 
						
							| 17 | 3 | cv | ⊢ 𝑥 | 
						
							| 18 | 14 17 16 | co | ⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 ) | 
						
							| 19 | 9 | cv | ⊢ 𝑘 | 
						
							| 20 |  | cvsca | ⊢  ·𝑠 | 
						
							| 21 | 5 20 | cfv | ⊢ (  ·𝑠  ‘ 𝑤 ) | 
						
							| 22 | 7 | cv | ⊢ 𝑦 | 
						
							| 23 | 22 17 16 | co | ⊢ ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) | 
						
							| 24 | 19 23 21 | co | ⊢ ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) | 
						
							| 25 | 18 24 | wceq | ⊢ ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) | 
						
							| 26 | 25 9 13 | wrex | ⊢ ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) | 
						
							| 27 | 26 8 6 | crab | ⊢ { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } | 
						
							| 28 | 3 7 6 6 27 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } ) | 
						
							| 29 |  | vi | ⊢ 𝑖 | 
						
							| 30 |  | csts | ⊢  sSet | 
						
							| 31 |  | citv | ⊢ Itv | 
						
							| 32 |  | cnx | ⊢ ndx | 
						
							| 33 | 32 31 | cfv | ⊢ ( Itv ‘ ndx ) | 
						
							| 34 | 29 | cv | ⊢ 𝑖 | 
						
							| 35 | 33 34 | cop | ⊢ 〈 ( Itv ‘ ndx ) ,  𝑖 〉 | 
						
							| 36 | 5 35 30 | co | ⊢ ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 ) | 
						
							| 37 |  | clng | ⊢ LineG | 
						
							| 38 | 32 37 | cfv | ⊢ ( LineG ‘ ndx ) | 
						
							| 39 | 17 22 34 | co | ⊢ ( 𝑥 𝑖 𝑦 ) | 
						
							| 40 | 14 39 | wcel | ⊢ 𝑧  ∈  ( 𝑥 𝑖 𝑦 ) | 
						
							| 41 | 14 22 34 | co | ⊢ ( 𝑧 𝑖 𝑦 ) | 
						
							| 42 | 17 41 | wcel | ⊢ 𝑥  ∈  ( 𝑧 𝑖 𝑦 ) | 
						
							| 43 | 17 14 34 | co | ⊢ ( 𝑥 𝑖 𝑧 ) | 
						
							| 44 | 22 43 | wcel | ⊢ 𝑦  ∈  ( 𝑥 𝑖 𝑧 ) | 
						
							| 45 | 40 42 44 | w3o | ⊢ ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) | 
						
							| 46 | 45 8 6 | crab | ⊢ { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } | 
						
							| 47 | 3 7 6 6 46 | cmpo | ⊢ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) | 
						
							| 48 | 38 47 | cop | ⊢ 〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 | 
						
							| 49 | 36 48 30 | co | ⊢ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) | 
						
							| 50 | 29 28 49 | csb | ⊢ ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) | 
						
							| 51 | 1 2 50 | cmpt | ⊢ ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 52 | 0 51 | wceq | ⊢ toTG  =  ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) |