| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cttg |
|- toTG |
| 1 |
|
vw |
|- w |
| 2 |
|
cvv |
|- _V |
| 3 |
|
vx |
|- x |
| 4 |
|
cbs |
|- Base |
| 5 |
1
|
cv |
|- w |
| 6 |
5 4
|
cfv |
|- ( Base ` w ) |
| 7 |
|
vy |
|- y |
| 8 |
|
vz |
|- z |
| 9 |
|
vk |
|- k |
| 10 |
|
cc0 |
|- 0 |
| 11 |
|
cicc |
|- [,] |
| 12 |
|
c1 |
|- 1 |
| 13 |
10 12 11
|
co |
|- ( 0 [,] 1 ) |
| 14 |
8
|
cv |
|- z |
| 15 |
|
csg |
|- -g |
| 16 |
5 15
|
cfv |
|- ( -g ` w ) |
| 17 |
3
|
cv |
|- x |
| 18 |
14 17 16
|
co |
|- ( z ( -g ` w ) x ) |
| 19 |
9
|
cv |
|- k |
| 20 |
|
cvsca |
|- .s |
| 21 |
5 20
|
cfv |
|- ( .s ` w ) |
| 22 |
7
|
cv |
|- y |
| 23 |
22 17 16
|
co |
|- ( y ( -g ` w ) x ) |
| 24 |
19 23 21
|
co |
|- ( k ( .s ` w ) ( y ( -g ` w ) x ) ) |
| 25 |
18 24
|
wceq |
|- ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) |
| 26 |
25 9 13
|
wrex |
|- E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) |
| 27 |
26 8 6
|
crab |
|- { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } |
| 28 |
3 7 6 6 27
|
cmpo |
|- ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) |
| 29 |
|
vi |
|- i |
| 30 |
|
csts |
|- sSet |
| 31 |
|
citv |
|- Itv |
| 32 |
|
cnx |
|- ndx |
| 33 |
32 31
|
cfv |
|- ( Itv ` ndx ) |
| 34 |
29
|
cv |
|- i |
| 35 |
33 34
|
cop |
|- <. ( Itv ` ndx ) , i >. |
| 36 |
5 35 30
|
co |
|- ( w sSet <. ( Itv ` ndx ) , i >. ) |
| 37 |
|
clng |
|- LineG |
| 38 |
32 37
|
cfv |
|- ( LineG ` ndx ) |
| 39 |
17 22 34
|
co |
|- ( x i y ) |
| 40 |
14 39
|
wcel |
|- z e. ( x i y ) |
| 41 |
14 22 34
|
co |
|- ( z i y ) |
| 42 |
17 41
|
wcel |
|- x e. ( z i y ) |
| 43 |
17 14 34
|
co |
|- ( x i z ) |
| 44 |
22 43
|
wcel |
|- y e. ( x i z ) |
| 45 |
40 42 44
|
w3o |
|- ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) |
| 46 |
45 8 6
|
crab |
|- { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } |
| 47 |
3 7 6 6 46
|
cmpo |
|- ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) |
| 48 |
38 47
|
cop |
|- <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. |
| 49 |
36 48 30
|
co |
|- ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) |
| 50 |
29 28 49
|
csb |
|- [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) |
| 51 |
1 2 50
|
cmpt |
|- ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) |
| 52 |
0 51
|
wceq |
|- toTG = ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) |