| Step | Hyp | Ref | Expression | 
						
							| 0 |  | cttg |  |-  toTG | 
						
							| 1 |  | vw |  |-  w | 
						
							| 2 |  | cvv |  |-  _V | 
						
							| 3 |  | vx |  |-  x | 
						
							| 4 |  | cbs |  |-  Base | 
						
							| 5 | 1 | cv |  |-  w | 
						
							| 6 | 5 4 | cfv |  |-  ( Base ` w ) | 
						
							| 7 |  | vy |  |-  y | 
						
							| 8 |  | vz |  |-  z | 
						
							| 9 |  | vk |  |-  k | 
						
							| 10 |  | cc0 |  |-  0 | 
						
							| 11 |  | cicc |  |-  [,] | 
						
							| 12 |  | c1 |  |-  1 | 
						
							| 13 | 10 12 11 | co |  |-  ( 0 [,] 1 ) | 
						
							| 14 | 8 | cv |  |-  z | 
						
							| 15 |  | csg |  |-  -g | 
						
							| 16 | 5 15 | cfv |  |-  ( -g ` w ) | 
						
							| 17 | 3 | cv |  |-  x | 
						
							| 18 | 14 17 16 | co |  |-  ( z ( -g ` w ) x ) | 
						
							| 19 | 9 | cv |  |-  k | 
						
							| 20 |  | cvsca |  |-  .s | 
						
							| 21 | 5 20 | cfv |  |-  ( .s ` w ) | 
						
							| 22 | 7 | cv |  |-  y | 
						
							| 23 | 22 17 16 | co |  |-  ( y ( -g ` w ) x ) | 
						
							| 24 | 19 23 21 | co |  |-  ( k ( .s ` w ) ( y ( -g ` w ) x ) ) | 
						
							| 25 | 18 24 | wceq |  |-  ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) | 
						
							| 26 | 25 9 13 | wrex |  |-  E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) | 
						
							| 27 | 26 8 6 | crab |  |-  { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } | 
						
							| 28 | 3 7 6 6 27 | cmpo |  |-  ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) | 
						
							| 29 |  | vi |  |-  i | 
						
							| 30 |  | csts |  |-  sSet | 
						
							| 31 |  | citv |  |-  Itv | 
						
							| 32 |  | cnx |  |-  ndx | 
						
							| 33 | 32 31 | cfv |  |-  ( Itv ` ndx ) | 
						
							| 34 | 29 | cv |  |-  i | 
						
							| 35 | 33 34 | cop |  |-  <. ( Itv ` ndx ) , i >. | 
						
							| 36 | 5 35 30 | co |  |-  ( w sSet <. ( Itv ` ndx ) , i >. ) | 
						
							| 37 |  | clng |  |-  LineG | 
						
							| 38 | 32 37 | cfv |  |-  ( LineG ` ndx ) | 
						
							| 39 | 17 22 34 | co |  |-  ( x i y ) | 
						
							| 40 | 14 39 | wcel |  |-  z e. ( x i y ) | 
						
							| 41 | 14 22 34 | co |  |-  ( z i y ) | 
						
							| 42 | 17 41 | wcel |  |-  x e. ( z i y ) | 
						
							| 43 | 17 14 34 | co |  |-  ( x i z ) | 
						
							| 44 | 22 43 | wcel |  |-  y e. ( x i z ) | 
						
							| 45 | 40 42 44 | w3o |  |-  ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) | 
						
							| 46 | 45 8 6 | crab |  |-  { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } | 
						
							| 47 | 3 7 6 6 46 | cmpo |  |-  ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) | 
						
							| 48 | 38 47 | cop |  |-  <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. | 
						
							| 49 | 36 48 30 | co |  |-  ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) | 
						
							| 50 | 29 28 49 | csb |  |-  [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) | 
						
							| 51 | 1 2 50 | cmpt |  |-  ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) | 
						
							| 52 | 0 51 | wceq |  |-  toTG = ( w e. _V |-> [_ ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | E. k e. ( 0 [,] 1 ) ( z ( -g ` w ) x ) = ( k ( .s ` w ) ( y ( -g ` w ) x ) ) } ) / i ]_ ( ( w sSet <. ( Itv ` ndx ) , i >. ) sSet <. ( LineG ` ndx ) , ( x e. ( Base ` w ) , y e. ( Base ` w ) |-> { z e. ( Base ` w ) | ( z e. ( x i y ) \/ x e. ( z i y ) \/ y e. ( x i z ) ) } ) >. ) ) |