| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ttgval.n | ⊢ 𝐺  =  ( toTG ‘ 𝐻 ) | 
						
							| 2 |  | ttgval.b | ⊢ 𝐵  =  ( Base ‘ 𝐻 ) | 
						
							| 3 |  | ttgval.m | ⊢  −   =  ( -g ‘ 𝐻 ) | 
						
							| 4 |  | ttgval.s | ⊢  ·   =  (  ·𝑠  ‘ 𝐻 ) | 
						
							| 5 |  | ttgval.i | ⊢ 𝐼  =  ( Itv ‘ 𝐺 ) | 
						
							| 6 | 1 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( toTG ‘ 𝐻 ) ) | 
						
							| 7 |  | elex | ⊢ ( 𝐻  ∈  𝑉  →  𝐻  ∈  V ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  ( Base ‘ 𝐻 ) ) | 
						
							| 9 | 8 2 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  ( Base ‘ 𝑤 )  =  𝐵 ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =  ( -g ‘ 𝐻 ) ) | 
						
							| 11 | 10 3 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  ( -g ‘ 𝑤 )  =   −  ) | 
						
							| 12 | 11 | oveqd | ⊢ ( 𝑤  =  𝐻  →  ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑧  −  𝑥 ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =  (  ·𝑠  ‘ 𝐻 ) ) | 
						
							| 14 | 13 4 | eqtr4di | ⊢ ( 𝑤  =  𝐻  →  (  ·𝑠  ‘ 𝑤 )  =   ·  ) | 
						
							| 15 |  | eqidd | ⊢ ( 𝑤  =  𝐻  →  𝑘  =  𝑘 ) | 
						
							| 16 | 11 | oveqd | ⊢ ( 𝑤  =  𝐻  →  ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑦  −  𝑥 ) ) | 
						
							| 17 | 14 15 16 | oveq123d | ⊢ ( 𝑤  =  𝐻  →  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 18 | 12 17 | eqeq12d | ⊢ ( 𝑤  =  𝐻  →  ( ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 19 | 18 | rexbidv | ⊢ ( 𝑤  =  𝐻  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 20 | 9 19 | rabeqbidv | ⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 21 | 9 9 20 | mpoeq123dv | ⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 22 | 21 | csbeq1d | ⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 23 |  | oveq1 | ⊢ ( 𝑤  =  𝐻  →  ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 ) ) | 
						
							| 24 | 9 | rabeqdv | ⊢ ( 𝑤  =  𝐻  →  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) | 
						
							| 25 | 9 9 24 | mpoeq123dv | ⊢ ( 𝑤  =  𝐻  →  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) ) | 
						
							| 26 | 25 | opeq2d | ⊢ ( 𝑤  =  𝐻  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) | 
						
							| 27 | 23 26 | oveq12d | ⊢ ( 𝑤  =  𝐻  →  ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 28 | 27 | csbeq2dv | ⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 29 | 22 28 | eqtrd | ⊢ ( 𝑤  =  𝐻  →  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 30 |  | df-ttg | ⊢ toTG  =  ( 𝑤  ∈  V  ↦  ⦋ ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧 ( -g ‘ 𝑤 ) 𝑥 )  =  ( 𝑘 (  ·𝑠  ‘ 𝑤 ) ( 𝑦 ( -g ‘ 𝑤 ) 𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝑤  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  ( Base ‘ 𝑤 ) ,  𝑦  ∈  ( Base ‘ 𝑤 )  ↦  { 𝑧  ∈  ( Base ‘ 𝑤 )  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 31 |  | ovex | ⊢ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V | 
						
							| 32 | 31 | csbex | ⊢ ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  ∈  V | 
						
							| 33 | 29 30 32 | fvmpt | ⊢ ( 𝐻  ∈  V  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 34 | 7 33 | syl | ⊢ ( 𝐻  ∈  𝑉  →  ( toTG ‘ 𝐻 )  =  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 ) ) | 
						
							| 35 | 2 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 36 | 35 35 | mpoex | ⊢ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V | 
						
							| 37 | 36 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 39 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑐  −  𝑎 )  =  ( 𝑐  −  𝑥 ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑎  =  𝑥  →  ( 𝑏  −  𝑎 )  =  ( 𝑏  −  𝑥 ) ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝑎  =  𝑥  →  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) | 
						
							| 42 | 39 41 | eqeq12d | ⊢ ( 𝑎  =  𝑥  →  ( ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) ) | 
						
							| 43 | 42 | rexbidv | ⊢ ( 𝑎  =  𝑥  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) ) ) | 
						
							| 44 | 43 | rabbidv | ⊢ ( 𝑎  =  𝑥  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) } ) | 
						
							| 45 |  | oveq1 | ⊢ ( 𝑏  =  𝑦  →  ( 𝑏  −  𝑥 )  =  ( 𝑦  −  𝑥 ) ) | 
						
							| 46 | 45 | oveq2d | ⊢ ( 𝑏  =  𝑦  →  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) | 
						
							| 47 | 46 | eqeq2d | ⊢ ( 𝑏  =  𝑦  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 48 | 47 | rexbidv | ⊢ ( 𝑏  =  𝑦  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 49 | 48 | rabbidv | ⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 50 |  | oveq1 | ⊢ ( 𝑐  =  𝑧  →  ( 𝑐  −  𝑥 )  =  ( 𝑧  −  𝑥 ) ) | 
						
							| 51 | 50 | eqeq1d | ⊢ ( 𝑐  =  𝑧  →  ( ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 52 | 51 | rexbidv | ⊢ ( 𝑐  =  𝑧  →  ( ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) )  ↔  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) ) ) | 
						
							| 53 | 52 | cbvrabv | ⊢ { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } | 
						
							| 54 | 49 53 | eqtrdi | ⊢ ( 𝑏  =  𝑦  →  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑥 )  =  ( 𝑘  ·  ( 𝑏  −  𝑥 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 55 | 44 54 | cbvmpov | ⊢ ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) | 
						
							| 56 | 38 55 | eqtr4di | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) ) | 
						
							| 57 |  | simpr | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) ) | 
						
							| 58 | 57 55 | eqtrdi | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 59 | 58 | opeq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( Itv ‘ ndx ) ,  𝑖 〉  =  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) | 
						
							| 60 | 59 | oveq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  =  ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) | 
						
							| 61 | 58 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 62 | 61 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 63 | 58 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑧 𝑖 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 64 | 63 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 65 | 58 | oveqd | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥 𝑖 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) | 
						
							| 66 | 65 | eleq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑦  ∈  ( 𝑥 𝑖 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) | 
						
							| 67 | 62 64 66 | 3orbi123d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) ) | 
						
							| 68 | 67 | rabbidv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) | 
						
							| 69 | 68 | mpoeq3dv | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) ) | 
						
							| 70 | 69 | opeq2d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) | 
						
							| 71 | 60 70 | oveq12d | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑎  ∈  𝐵 ,  𝑏  ∈  𝐵  ↦  { 𝑐  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑐  −  𝑎 )  =  ( 𝑘  ·  ( 𝑏  −  𝑎 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 72 | 56 71 | syldan | ⊢ ( ( 𝐻  ∈  𝑉  ∧  𝑖  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) )  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 73 | 37 72 | csbied | ⊢ ( 𝐻  ∈  𝑉  →  ⦋ ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  /  𝑖 ⦌ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  𝑖 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝑖 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝑖 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝑖 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 74 | 6 34 73 | 3eqtrd | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 75 | 74 | fveq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) ) | 
						
							| 76 |  | itvid | ⊢ Itv  =  Slot  ( Itv ‘ ndx ) | 
						
							| 77 |  | 1nn0 | ⊢ 1  ∈  ℕ0 | 
						
							| 78 |  | 6nn | ⊢ 6  ∈  ℕ | 
						
							| 79 | 77 78 | decnncl | ⊢ ; 1 6  ∈  ℕ | 
						
							| 80 | 79 | nnrei | ⊢ ; 1 6  ∈  ℝ | 
						
							| 81 |  | 6nn0 | ⊢ 6  ∈  ℕ0 | 
						
							| 82 |  | 7nn | ⊢ 7  ∈  ℕ | 
						
							| 83 |  | 6lt7 | ⊢ 6  <  7 | 
						
							| 84 | 77 81 82 83 | declt | ⊢ ; 1 6  <  ; 1 7 | 
						
							| 85 | 80 84 | ltneii | ⊢ ; 1 6  ≠  ; 1 7 | 
						
							| 86 |  | itvndx | ⊢ ( Itv ‘ ndx )  =  ; 1 6 | 
						
							| 87 |  | lngndx | ⊢ ( LineG ‘ ndx )  =  ; 1 7 | 
						
							| 88 | 86 87 | neeq12i | ⊢ ( ( Itv ‘ ndx )  ≠  ( LineG ‘ ndx )  ↔  ; 1 6  ≠  ; 1 7 ) | 
						
							| 89 | 85 88 | mpbir | ⊢ ( Itv ‘ ndx )  ≠  ( LineG ‘ ndx ) | 
						
							| 90 | 76 89 | setsnid | ⊢ ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) )  =  ( Itv ‘ ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 91 | 75 90 | eqtr4di | ⊢ ( 𝐻  ∈  𝑉  →  ( Itv ‘ 𝐺 )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 92 | 5 | a1i | ⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( Itv ‘ 𝐺 ) ) | 
						
							| 93 | 76 | setsid | ⊢ ( ( 𝐻  ∈  𝑉  ∧  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  ∈  V )  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 94 | 36 93 | mpan2 | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } )  =  ( Itv ‘ ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 ) ) ) | 
						
							| 95 | 91 92 94 | 3eqtr4d | ⊢ ( 𝐻  ∈  𝑉  →  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) | 
						
							| 96 | 95 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑦 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 97 | 96 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ↔  𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 98 | 95 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑧 𝐼 𝑦 )  =  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) | 
						
							| 99 | 98 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ↔  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 ) ) ) | 
						
							| 100 | 95 | oveqd | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥 𝐼 𝑧 )  =  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) | 
						
							| 101 | 100 | eleq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑦  ∈  ( 𝑥 𝐼 𝑧 )  ↔  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) | 
						
							| 102 | 97 99 101 | 3orbi123d | ⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) )  ↔  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) ) ) | 
						
							| 103 | 102 | rabbidv | ⊢ ( 𝐻  ∈  𝑉  →  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) }  =  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) | 
						
							| 104 | 103 | mpoeq3dv | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } )  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) ) | 
						
							| 105 | 104 | opeq2d | ⊢ ( 𝐻  ∈  𝑉  →  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉  =  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) | 
						
							| 106 | 105 | oveq2d | ⊢ ( 𝐻  ∈  𝑉  →  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑥  ∈  ( 𝑧 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑦 )  ∨  𝑦  ∈  ( 𝑥 ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 𝑧 ) ) } ) 〉 ) ) | 
						
							| 107 | 74 106 | eqtr4d | ⊢ ( 𝐻  ∈  𝑉  →  𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 ) ) | 
						
							| 108 | 107 95 | jca | ⊢ ( 𝐻  ∈  𝑉  →  ( 𝐺  =  ( ( 𝐻  sSet  〈 ( Itv ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) 〉 )  sSet  〈 ( LineG ‘ ndx ) ,  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ( 𝑧  ∈  ( 𝑥 𝐼 𝑦 )  ∨  𝑥  ∈  ( 𝑧 𝐼 𝑦 )  ∨  𝑦  ∈  ( 𝑥 𝐼 𝑧 ) ) } ) 〉 )  ∧  𝐼  =  ( 𝑥  ∈  𝐵 ,  𝑦  ∈  𝐵  ↦  { 𝑧  ∈  𝐵  ∣  ∃ 𝑘  ∈  ( 0 [,] 1 ) ( 𝑧  −  𝑥 )  =  ( 𝑘  ·  ( 𝑦  −  𝑥 ) ) } ) ) ) |