Metamath Proof Explorer


Theorem ttgvalOLD

Description: Obsolete proof of ttgval as of 9-Nov-2024. Define a function to augment a subcomplex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses ttgval.n ⊒G=to𝒒Tarski⁑H
ttgval.b ⊒B=BaseH
ttgval.m ⊒-Λ™=-H
ttgval.s βŠ’Β·Λ™=β‹…H
ttgval.i ⊒I=Itv⁑G
Assertion ttgvalOLD ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz∧I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x

Proof

Step Hyp Ref Expression
1 ttgval.n ⊒G=to𝒒Tarski⁑H
2 ttgval.b ⊒B=BaseH
3 ttgval.m ⊒-Λ™=-H
4 ttgval.s βŠ’Β·Λ™=β‹…H
5 ttgval.i ⊒I=Itv⁑G
6 1 a1i ⊒H∈Vβ†’G=to𝒒Tarski⁑H
7 elex ⊒H∈Vβ†’H∈V
8 fveq2 ⊒w=Hβ†’Basew=BaseH
9 8 2 eqtr4di ⊒w=Hβ†’Basew=B
10 fveq2 ⊒w=Hβ†’-w=-H
11 10 3 eqtr4di ⊒w=Hβ†’-w=-Λ™
12 11 oveqd ⊒w=Hβ†’z-wx=z-Λ™x
13 fveq2 ⊒w=Hβ†’β‹…w=β‹…H
14 13 4 eqtr4di ⊒w=Hβ†’β‹…w=Β·Λ™
15 eqidd ⊒w=Hβ†’k=k
16 11 oveqd ⊒w=Hβ†’y-wx=y-Λ™x
17 14 15 16 oveq123d ⊒w=Hβ†’kβ‹…wy-wx=kΒ·Λ™y-Λ™x
18 12 17 eqeq12d ⊒w=Hβ†’z-wx=kβ‹…wy-wx↔z-Λ™x=kΒ·Λ™y-Λ™x
19 18 rexbidv ⊒w=Hβ†’βˆƒk∈01z-wx=kβ‹…wy-wxβ†”βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
20 9 19 rabeqbidv ⊒w=Hβ†’z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
21 9 9 20 mpoeq123dv ⊒w=Hβ†’x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
22 21 csbeq1d ⊒w=H→⦋x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
23 oveq1 ⊒w=Hβ†’wsSetItv⁑ndxi=HsSetItv⁑ndxi
24 9 rabeqdv ⊒w=Hβ†’z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=z∈B|z∈xiy∨x∈ziy∨y∈xiz
25 9 9 24 mpoeq123dv ⊒w=Hβ†’x∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=x∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
26 25 opeq2d ⊒w=Hβ†’Line𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
27 23 26 oveq12d ⊒w=Hβ†’wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
28 27 csbeq2dv ⊒w=H→⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
29 22 28 eqtrd ⊒w=H→⦋x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
30 df-ttg ⊒to𝒒Tarski=w∈VβŸΌβ¦‹x∈Basew,y∈Basew⟼z∈Basew|βˆƒk∈01z-wx=kβ‹…wy-wx/i⦌wsSetItv⁑ndxisSetLine𝒒⁑ndxx∈Basew,y∈Basew⟼z∈Basew|z∈xiy∨x∈ziy∨y∈xiz
31 ovex ⊒HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz∈V
32 31 csbex βŠ’β¦‹x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz∈V
33 29 30 32 fvmpt ⊒H∈Vβ†’to𝒒Tarski⁑H=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
34 7 33 syl ⊒H∈Vβ†’to𝒒Tarski⁑H=⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz
35 2 fvexi ⊒B∈V
36 35 35 mpoex ⊒x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈V
37 36 a1i ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈V
38 simpr ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
39 oveq2 ⊒a=xβ†’c-Λ™a=c-Λ™x
40 oveq2 ⊒a=xβ†’b-Λ™a=b-Λ™x
41 40 oveq2d ⊒a=xβ†’kΒ·Λ™b-Λ™a=kΒ·Λ™b-Λ™x
42 39 41 eqeq12d ⊒a=xβ†’c-Λ™a=kΒ·Λ™b-Λ™a↔c-Λ™x=kΒ·Λ™b-Λ™x
43 42 rexbidv ⊒a=xβ†’βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†”βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x
44 43 rabbidv ⊒a=xβ†’c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a=c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x
45 oveq1 ⊒b=yβ†’b-Λ™x=y-Λ™x
46 45 oveq2d ⊒b=yβ†’kΒ·Λ™b-Λ™x=kΒ·Λ™y-Λ™x
47 46 eqeq2d ⊒b=yβ†’c-Λ™x=kΒ·Λ™b-Λ™x↔c-Λ™x=kΒ·Λ™y-Λ™x
48 47 rexbidv ⊒b=yβ†’βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™xβ†”βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x
49 48 rabbidv ⊒b=yβ†’c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x=c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x
50 oveq1 ⊒c=zβ†’c-Λ™x=z-Λ™x
51 50 eqeq1d ⊒c=zβ†’c-Λ™x=kΒ·Λ™y-Λ™x↔z-Λ™x=kΒ·Λ™y-Λ™x
52 51 rexbidv ⊒c=zβ†’βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™xβ†”βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
53 52 cbvrabv ⊒c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™y-Λ™x=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
54 49 53 eqtrdi ⊒b=yβ†’c∈B|βˆƒk∈01c-Λ™x=kΒ·Λ™b-Λ™x=z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
55 44 54 cbvmpov ⊒a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
56 38 55 eqtr4di ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a
57 simpr ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™a
58 57 55 eqtrdi ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
59 58 opeq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’Itv⁑ndxi=Itv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
60 59 oveq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’HsSetItv⁑ndxi=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
61 58 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’xiy=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
62 61 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈xiy↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
63 58 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’ziy=zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
64 63 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’x∈ziy↔x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
65 58 oveqd ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’xiz=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
66 65 eleq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’y∈xiz↔y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
67 62 64 66 3orbi123d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈xiy∨x∈ziy∨y∈xiz↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
68 67 rabbidv ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’z∈B|z∈xiy∨x∈ziy∨y∈xiz=z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
69 68 mpoeq3dv ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’x∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=x∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
70 69 opeq2d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
71 60 70 oveq12d ⊒H∈V∧i=a∈B,b∈B⟼c∈B|βˆƒk∈01c-Λ™a=kΒ·Λ™b-Λ™aβ†’HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
72 56 71 syldan ⊒H∈V∧i=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xβ†’HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
73 37 72 csbied ⊒H∈V→⦋x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x/i⦌HsSetItv⁑ndxisSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xiy∨x∈ziy∨y∈xiz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
74 6 34 73 3eqtrd ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
75 74 fveq2d ⊒H∈Vβ†’Itv⁑G=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
76 itvid ⊒Itv=SlotItv⁑ndx
77 1nn0 ⊒1βˆˆβ„•0
78 6nn ⊒6βˆˆβ„•
79 77 78 decnncl ⊒16βˆˆβ„•
80 79 nnrei ⊒16βˆˆβ„
81 6nn0 ⊒6βˆˆβ„•0
82 7nn ⊒7βˆˆβ„•
83 6lt7 ⊒6<7
84 77 81 82 83 declt ⊒16<17
85 80 84 ltneii ⊒16β‰ 17
86 itvndx ⊒Itv⁑ndx=16
87 lngndx ⊒Line𝒒⁑ndx=17
88 86 87 neeq12i ⊒Itv⁑ndxβ‰ Line𝒒⁑ndx↔16β‰ 17
89 85 88 mpbir ⊒Itv⁑ndxβ‰ Line𝒒⁑ndx
90 76 89 setsnid ⊒Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
91 75 90 eqtr4di ⊒H∈Vβ†’Itv⁑G=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
92 5 a1i ⊒H∈Vβ†’I=Itv⁑G
93 76 setsid ⊒H∈V∧x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
94 36 93 mpan2 ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x=Itv⁑HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
95 91 92 94 3eqtr4d ⊒H∈Vβ†’I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x
96 95 oveqd ⊒H∈Vβ†’xIy=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
97 96 eleq2d ⊒H∈Vβ†’z∈xIy↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
98 95 oveqd ⊒H∈Vβ†’zIy=zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
99 98 eleq2d ⊒H∈Vβ†’x∈zIy↔x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy
100 95 oveqd ⊒H∈Vβ†’xIz=xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
101 100 eleq2d ⊒H∈Vβ†’y∈xIz↔y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
102 97 99 101 3orbi123d ⊒H∈Vβ†’z∈xIy∨x∈zIy∨y∈xIz↔z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
103 102 rabbidv ⊒H∈Vβ†’z∈B|z∈xIy∨x∈zIy∨y∈xIz=z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
104 103 mpoeq3dv ⊒H∈Vβ†’x∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=x∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
105 104 opeq2d ⊒H∈Vβ†’Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=Line𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
106 105 oveq2d ⊒H∈Vβ†’HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨x∈zx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xy∨y∈xx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xz
107 74 106 eqtr4d ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz
108 107 95 jca ⊒H∈Vβ†’G=HsSetItv⁑ndxx∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™xsSetLine𝒒⁑ndxx∈B,y∈B⟼z∈B|z∈xIy∨x∈zIy∨y∈xIz∧I=x∈B,y∈B⟼z∈B|βˆƒk∈01z-Λ™x=kΒ·Λ™y-Λ™x